Rational designing Ni3-xFexS2 nanosheet arrays on Ni foam to enhance supercapacitor performance


Supercapacitors are important renewable and sustainable electrochemical energy storage devices with significant advantages including rapid charge/discharge rates, long cycle lifetimes, and high power densities. Herein, to achieve high-performance supercapacitors, Ni3-xFexS2 nanosheet arrays were synthesized on Ni foam with different Ni/Fe ratios. The incorporation of Fe atoms allows the adjustment of the electron configuration of the Ni–Fe bimetal sulfides and thus significantly influenced their electrochemical activity in a supercapacitor system. As expected, compared with the monometal sulfide Ni3S2, the Ni2FeS2-based supercapacitor delivered a superior capacitive performance and rate capability owing to its unique nanosheet array structure and bimetallic composition.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5


  1. 1.

    Chen C-R, Qin H, Cong H-P, Yu S-H (2019) A Highly Stretchable and Real‐Time Healable Supercapacitor. Adv Mater 31:1900573

    Article  Google Scholar 

  2. 2.

    Wang Y, Su S, Cai L, Qiu B, Wang N, Xiong J, Yang C, Tao X, Chai Y (2019) Monolithic Integration of All‐in‐One Supercapacitor for 3D Electronics. Adv Energy Mater 9:1900037

    Article  Google Scholar 

  3. 3.

    Cherusseri J, Choudhary N, Sambath Kumar K, Jung Y, Thomas J (2019) Recent trends in transition metal dichalcogenide based supercapacitor electrodes. Nanoscale Horiz 4:840–858

    CAS  Article  Google Scholar 

  4. 4.

    Raza W, Ali F, Raza N, Luo Y, Kim K-H, Yang J, Kumar S, Mehmood A, Kwon EE (2018) Recent advancements in supercapacitor technology. Nano Energy 52:441–473

    CAS  Article  Google Scholar 

  5. 5.

    Wang D-G, Liang Z, Gao S, Qu C, Zou R (2020) Metal-organic framework-based materials for hybrid supercapacitor application. Coord Chem Rev 404:213093

    CAS  Article  Google Scholar 

  6. 6.

    González A, Goikolea E, Barrena JA, Mysyk R (2016) Review on supercapacitors: Technologies and materials. Renew Sust Energ Rev 58:1189–1206

    Article  Google Scholar 

  7. 7.

    Salanne M, Rotenberg B, Naoi K, Kaneko K, Taberna PL, Grey CP, Dunn B, Simon P (2016) Efficient storage mechanisms for building better supercapacitors. Nat Energy 1:16070

    CAS  Article  Google Scholar 

  8. 8.

    Borenstein A, Hanna O, Attias R, Luski S, Brousse T, Aurbach D (2017) Carbon-based composite materials for supercapacitor electrodes: a review. J Mater Chem A 5:12653–12672

    CAS  Article  Google Scholar 

  9. 9.

    Guardia L, Suárez L, Querejeta N, Vretenár V, Kotrusz P, Skákalová V, Centeno TA (2019) Biomass waste-carbon/reduced graphene oxide composite electrodes for enhanced supercapacitors. Electrochim Acta 298:910–917

    CAS  Article  Google Scholar 

  10. 10.

    Kshetri T, Tran DT, Nguyen DC, Kim NH, Lau K-t, Lee JH (2020) Ternary graphene-carbon nanofibers-carbon nanotubes structure for hybrid supercapacitor. Chem Eng J 380:122543

    CAS  Article  Google Scholar 

  11. 11.

    Yang Z, Tian J, Yin Z, Cui C, Qian W, Wei F (2019) Carbon nanotube- and graphene-based nanomaterials and applications in high-voltage supercapacitor: A review. Carbon 141:467–480

    CAS  Article  Google Scholar 

  12. 12.

    Deng T, Zhang W, Arcelus O, Kim J-G, Carrasco J, Yoo SJ, Zheng W, Wang J, Tian H, Zhang H, Cui X, Rojo T (2017) Atomic-level energy storage mechanism of cobalt hydroxide electrode for pseudocapacitors. Nat Commun 8:15194

    CAS  Article  Google Scholar 

  13. 13.

    Sun S, Zhai T, Liang C, Savilov SV, Xia H (2018) Boosted crystalline/amorphous Fe2O3-δ core/shell heterostructure for flexible solid-state pseudocapacitors in large scale. Nano Energy 45:390–397

    CAS  Article  Google Scholar 

  14. 14.

    Zhang L, Shi D, Liu T, Jaroniec M, Yu J (2019) Nickel-based materials for supercapacitors. Mater Today 25:35–65

    CAS  Article  Google Scholar 

  15. 15.

    Jia J, Liu XD, Li X, Cao L, Zhang M, Wu B, Zhou X (2020) Effect of residual ions of hydrothermal precursors on the thickness and capacitive properties of WO3 nanoplates. J Alloys Compd 823:153715

    CAS  Article  Google Scholar 

  16. 16.

    Liu XX, Wu R, Wang Y, Xiao SH, He Q, Niu XB, Blackwood DJ, Chen JS (2019) Self-supported core/shell Co3O4@Ni3S2 nanowires for high-performance supercapacitors. Electrochim Acta 311:221–229

    CAS  Article  Google Scholar 

  17. 17.

    Wu MK, Chen C, Zhou JJ, Yi FY, Tao K, Han L (2018) MOF–derived hollow double–shelled NiO nanospheres for high–performance supercapacitors. J Alloys Compd 734:1–8

    CAS  Article  Google Scholar 

  18. 18.

    You Y, Zheng M, Jiang D, Li F, Yuan H, Zhai Z, Ma L, Shen W (2018) Boosting supercapacitive performance of ultrathin mesoporous NiCo2O4nanosheet arrays by surface sulfation. J Mater Chem A 6:8742–8749

    CAS  Article  Google Scholar 

  19. 19.

    Zhang G, Xiao X, Li B, Gu P, Xue H, Pang H (2017) Transition metal oxides with one-dimensional/one-dimensional-analogue nanostructures for advanced supercapacitors. J Mater Chem A 5:8155–8186

    CAS  Article  Google Scholar 

  20. 20.

    Kim JK, Lee CS, Lee JH, Park JT, Kim JH (2019) J Mater Sci Technol

  21. 21.

    Li S, Yu C, Yang J, Zhao C, Zhang M, Huang H, Liu Z, Guo W, Qiu J (2017) A superhydrophilic “nanoglue” for stabilizing metal hydroxides onto carbon materials for high-energy and ultralong-life asymmetric supercapacitors. Energy Environ Sci 10:1958–1965

    CAS  Article  Google Scholar 

  22. 22.

    Sheng H, Zhang X, Ma Y, Wang P, Zhou J, Su Q, Lan W, Xie E, Zhang CJ (2019) Ultrathin, Wrinkled, Vertically Aligned Co(OH)2Nanosheets/Ag Nanowires Hybrid Network for Flexible Transparent Supercapacitor with High Performance. ACS Appl Mater Interfaces 11:8992–9001

    CAS  Article  Google Scholar 

  23. 23.

    Wu J, Rui X, Long G, Chen W, Yan Q, Zhang Q (2015) Pushing Up Lithium Storage through Nanostructured Polyazaacene Analogues as Anode. Angew Chem Int Ed 54:7354–7358

    CAS  Article  Google Scholar 

  24. 24.

    Wu J, Rui X, Wang C, Pei W-B, Lau R, Yan Q, Zhang Q (2015) Nanostructured Conjugated Ladder Polymers for Stable and Fast Lithium Storage Anodes with High-Capacity. Adv Energy Mater 5:1402189

    Article  Google Scholar 

  25. 25.

    Boota M, Gogotsi Y (2019) MXene-Conducting Polymer Asymmetric Pseudocapacitors. Adv Energy Mater 9:1802917

    Article  Google Scholar 

  26. 26.

    Liang M, Zhao M, Wang H, Zheng Q, Song X (2018) Superior cycling stability of a crystalline/amorphous Co3S4core–shell heterostructure for aqueous hybrid supercapacitors. J Mater Chem A 6:21350–21359

    CAS  Article  Google Scholar 

  27. 27.

    Lu Y, Li B, Zheng S, Xu Y, Xue H, Pang H (2017) Syntheses and Energy Storage Applications of MxSy(M = Cu, Ag, Au) and Their Composites: Rechargeable Batteries and Supercapacitors. Adv Funct Mater 27:1703949

    Article  Google Scholar 

  28. 28.

    Song X, Chen HC, Huang C, Qin Y, Li H (2018) Highly active and porous M3S4 (M=Ni, Co) with enriched electroactive edge sites for hybrid supercapacitor with better power and energy delivery performance. Electrochim Acta 283:121–131

    CAS  Article  Google Scholar 

  29. 29.

    Song X, Huang C, Qin Y, Li H, Chen HC (2018) Hierarchical hollow, sea-urchin-like and porous Ni0.5Co0.5Se2as advanced battery material for hybrid supercapacitors. J Mater Chem A 6:16205–16212

    CAS  Article  Google Scholar 

  30. 30.

    Yang Y, Li M-L, Lin J-N, Zou M-Y, Gu S-T, Hong X-J, Si L-P, Cai Y-P (2020) MOF-derived Ni3S4Encapsulated in 3D Conductive Network for High-Performance Supercapacitor. Inorg Chem 59:2406–2412

    CAS  Article  Google Scholar 

  31. 31.

    Tao K, Han X, Ma Q, Han L (2018) A metal–organic framework derived hierarchical nickel–cobalt sulfide nanosheet array on Ni foam with enhanced electrochemical performance for supercapacitors. Dalton Trans 47:3496–3502

    CAS  Article  Google Scholar 

  32. 32.

    Yu F, Chang Z, Yuan X, Wang F, Zhu Y, Fu L, Chen Y, Wang H, Wu Y, Li W (2018) Ultrathin NiCo2S4@graphene with a core–shell structure as a high performance positive electrode for hybrid supercapacitors. J Mater Chem A 6:5856–5861

    CAS  Article  Google Scholar 

  33. 33.

    Li G-C, Liu M, Wu M-K, Liu P-F, Zhou Z, Zhu S-R, Liu R, Han L (2016) MOF-derived self-sacrificing route to hollow NiS2/ZnS nanospheres for high performance supercapacitors. RSC Adv 6:103517–103522

    CAS  Article  Google Scholar 

  34. 34.

    Yi M, Zhang C, Cao C, Xu C, Sa B, Cai D, Zhan H (2019) MOF-Derived Hybrid Hollow Submicrospheres of Nitrogen-Doped Carbon-Encapsulated Bimetallic Ni–Co–S Nanoparticles for Supercapacitors and Lithium Ion Batteries. Inorg Chem 58:3916–3924

    CAS  Article  Google Scholar 

  35. 35.

    Zhao W, Zheng Y, Cui L, Jia D, Wei D, Zheng R, Barrow C, Yang W, Liu J (2019) MOF derived Ni-Co-S nanosheets on electrochemically activated carbon cloth via an etching/ion exchange method for wearable hybrid supercapacitors. Chem Eng J 371:461–469

    CAS  Article  Google Scholar 

  36. 36.

    Liu S, Xu G, Li J, Wang B, Huang Z, Chen Q, Qi X (2018) Iron-Cobalt Bi-Metallic Sulfide Nanowires on Ni Foam for Applications in High-Performance Supercapacitors. ChemElectroChem 5:2250–2255

    CAS  Article  Google Scholar 

  37. 37.

    Ren X, Du Y, Song M, Zhou Y, Chen Y, Ma F, Wan J (2019) In-situ transformation of Ni foam into sandwich nanostructured Co1.29Ni1.71O4 nanoparticle@CoNi2S4 nanosheet networks for high-performance asymmetric supercapacitors. Chem Eng J 375:122063

    CAS  Article  Google Scholar 

  38. 38.

    Ren X, Zhou Y, Du Y, Jiang Y, Chen Y, Wan J, Ma F (2020) Facile ion exchange to construct Ni-Fe-Co sulfides and hydroxides ultrathin nanosheets with rich interfaces for advanced all-solid-state asymmetric supercapacitors. Appl Surf Sci 514:145951

    CAS  Article  Google Scholar 

  39. 39.

    Li W, Wang S, Xin L, Wu M, Lou X (2016) Single-crystal β-NiS nanorod arrays with a hollow-structured Ni3S2framework for supercapacitor applications. J Mater Chem A 4:7700–7709

    CAS  Article  Google Scholar 

  40. 40.

    Wang Y-F, Zhao S-X, Yu L, Zheng X-X, Wu Q-L, Cao G-Z (2019) Design of multiple electrode structures based on nano Ni3S2and carbon nanotubes for high performance supercapacitors. J Mater Chem A 7:7406–7414

    Article  Google Scholar 

Download references


This project was supported by Scientific Research Fund of Hunan Provincial Education Department (18C0784) and Science and Technology Project of Changsha (K1705059).

Author information



Corresponding author

Correspondence to Jinbo Li.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material


The XRD patterns. TEM and high-resolution TEM images of Ni2FeS2. A series of CV curves obtained from all Ni3-xFexS2 electrodes (DOCX 1634 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Li, J., Song, J. & Li, X. Rational designing Ni3-xFexS2 nanosheet arrays on Ni foam to enhance supercapacitor performance. Ionics 26, 3677–3683 (2020). https://doi.org/10.1007/s11581-020-03642-1

Download citation


  • Nickel–iron bimetal sulfides
  • Nanosheets
  • Supercapacitor