MOF derived graphitic carbon nitride/oxygen vacancies-rich zinc oxide nanocomposites with enhanced supercapacitive performance

Abstract

Supercapacitors with high power density and durability have shown enormous potential for smart electronics. Herein, a novel graphitic carbon nitride (g-C3N4) coated with oxygen vacancies-rich ZnO (OZCN) nanocomposites was prepared from zeolitic imidazolate framework precursor by direct thermal decomposition melamine in air. The as-prepared OZCN nanocomposites exhibited high capacitive performance (3,000 F g-1 at 3 A g-1) and excellent cycling stability due to the synergetic effect of g-C3N4 and oxygen vacancies-rich ZnO. Additionally, the assembled asymmetric supercapacitor displayed an energy density of 100.9 Wh kg-1, while the capacitance retention remained at 86.2% even after 1,000 cycles at 7 A g-1. This study is highlighting a new way for designing metal oxide electrode possessing excellent electronic properties for durable and low-cost energy storage devices.

This is a preview of subscription content, log in to check access.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. 1.

    Zhang LL, Zhao XS (2009) Carbon-based materials as supercapacitor electrodes. Chem Soc Rev 38(9):2520–2531. https://doi.org/10.1039/B813846J

    CAS  Article  PubMed  Google Scholar 

  2. 2.

    Snook GA, Kao P, Best AS (2011) Conducting-polymer-based supercapacitor devices and electrodes. J Power Sources 196(1):1–12. https://doi.org/10.1016/j.jpowsour.2010.06.084

    CAS  Article  Google Scholar 

  3. 3.

    Frackowiak E (2007) Carbon materials for supercapacitor application. Phys Chem Chem Phys 9(15):1774–1785. https://doi.org/10.1039/B618139M

    CAS  Article  PubMed  Google Scholar 

  4. 4.

    Wang X, Song K, Yang R, Li J, Jing X, Wang J (2019) Facile synthesis of nanowire and rectangular flakes of Co3O4 onto Ni foam for high-performance asymmetric supercapacitors. Ionics 25(8):3875–3883. https://doi.org/10.1007/s11581-019-02943-4

    CAS  Article  Google Scholar 

  5. 5.

    Pan H, Li J, Feng Y (2010) Carbon nanotubes for supercapacitor. Nanoscale Res Lett 5(3):654–668. https://doi.org/10.1007/s11671-009-9508-2

    CAS  Article  PubMed  Google Scholar 

  6. 6.

    Zhang K, Zhang LL, Zhao XS, Wu J (2010) Graphene/polyaniline nanofiber composites as supercapacitor electrodes. Chem Mater 22(4):1392–1401. https://doi.org/10.1021/cm902876u

    CAS  Article  Google Scholar 

  7. 7.

    Conway BE (1991) Transition from “supercapacitor” to “battery” behavior in electrochemical energy storage. J Electrochem Soc 138(6):1539–1548. https://doi.org/10.1149/1.2085829

    CAS  Article  Google Scholar 

  8. 8.

    Tian Y, Zhu L, Han E, Shang M, Song M (2020) Effect of templating agent on Ni, Co, Al-based layered double hydroxides for high-performance asymmetric supercapacitors. Ionics 26(1):367–381. https://doi.org/10.1007/s11581-019-03201-3

    CAS  Article  Google Scholar 

  9. 9.

    Zhang Y, Li H, Pan L, Lu T, Sun Z (2009) Capacitive behavior of graphene–ZnO composite film for supercapacitors. J Electroanal Chem 634(1):68–71. https://doi.org/10.1016/j.jelechem.2009.07.010

    CAS  Article  Google Scholar 

  10. 10.

    Yang P, Xiao X, Li Y, Ding Y, Qiang P, Tan X, Mai W, Lin Z, Wu W, Li T, Jin H, Liu P, Zhou J, Wong CP, Wang ZL (2013) Hydrogenated ZnO core–shell nanocables for flexible supercapacitors and self-powered systems. ACS Nano 7(3):2617–2626. https://doi.org/10.1021/nn306044d

    CAS  Article  PubMed  Google Scholar 

  11. 11.

    Lu T, Zhang Y, Li H, Pan L, Li Y, Sun Z (2010) Electrochemical behaviors of graphene–ZnO and graphene–SnO2 composite films for supercapacitors. Electrochim Acta 55(13):4170–4173. https://doi.org/10.1016/j.electacta.2010.02.095

    CAS  Article  Google Scholar 

  12. 12.

    Xing Z, Chu Q, Ren X, Ge C, Qusti AH, Asiri AM, Al-Youbi AO, Sun X (2014) Ni3S2 coated ZnO array for high-performance supercapacitors. J Power Sources 245:463–467. https://doi.org/10.1016/j.jpowsour.2013.07.012

    CAS  Article  Google Scholar 

  13. 13.

    Zhang Y, Sun X, Pan L, Li H, Sun Z, Sun C, Tay BK (2009) Carbon nanotube–ZnO nanocomposite electrodes for supercapacitors. Solid State Ionics 180(32):1525–1528. https://doi.org/10.1016/j.ssi.2009.10.001

    CAS  Article  Google Scholar 

  14. 14.

    Selvakumar M, Krishna Bhat D, Manish Aggarwal A, Prahladh Iyer S, Sravani G (2010) Nano ZnO-activated carbon composite electrodes for supercapacitors. Phys B Condens Matter 405(9):2286–2289. https://doi.org/10.1016/j.physb.2010.02.028

    CAS  Article  Google Scholar 

  15. 15.

    Li G-R, Wang Z-L, Zheng F-L, Ou Y-N, Tong Y-X (2011) ZnO@MoO3 core/shell nanocables: facile electrochemical synthesis and enhanced supercapacitor performances. J Mater Chem 21(12):4217–4221. https://doi.org/10.1039/C0JM03500A

    CAS  Article  Google Scholar 

  16. 16.

    Kim CH, Kim B-H (2015) Zinc oxide/activated carbon nanofiber composites for high-performance supercapacitor electrodes. J Power Sources 274:512–520. https://doi.org/10.1016/j.jpowsour.2014.10.126

    CAS  Article  Google Scholar 

  17. 17.

    Zhu J, Huang Y, Mei W, Zhao C, Zhang C, Zhang J, Amiinu IS, Mu S (2019) Effects of intrinsic pentagon defects on electrochemical reactivity of carbon nanomaterials. Angew Chem Int Ed 58(12):3859–3864. https://doi.org/10.1002/anie.201813805

    CAS  Article  Google Scholar 

  18. 18.

    Luo J, Wang J, Liu S, Wu W, Jia T, Yang Z, Mu S, Huang Y (2019) Graphene quantum dots encapsulated tremella-like NiCo2O4 for advanced asymmetric supercapacitors. Carbon 146:1–8. https://doi.org/10.1016/j.carbon.2019.01.078

    CAS  Article  Google Scholar 

  19. 19.

    Meng T, Kou Z, Amiinu IS, Hong X, Li Q, Tang Y, Zhao Y, Liu S, Mai L, Mu S (2018) Electronic structure control of tungsten oxide activated by Ni for ultrahigh-performance supercapacitors. Small 14(20):1800381. https://doi.org/10.1002/smll.201800381

    CAS  Article  Google Scholar 

  20. 20.

    Zhang Y, Sun X, Pan L, Li H, Sun Z, Sun C, Tay BK (2009) Carbon nanotube–zinc oxide electrode and gel polymer electrolyte for electrochemical supercapacitors. J Alloys Compd 480(2):L17–L19. https://doi.org/10.1016/j.jallcom.2009.01.114

    CAS  Article  Google Scholar 

  21. 21.

    Zilong W, Zhu Z, Qiu J, Yang S (2014) High performance flexible solid-state asymmetric supercapacitors from MnO2/ZnO core–shell nanorods//specially reduced graphene oxide. J Mater Chem C 2(7):1331–1336. https://doi.org/10.1039/C3TC31476F

    Article  Google Scholar 

  22. 22.

    Chee WK, Lim HN, Harrison I, Chong KF, Zainal Z, Ng CH, Huang NM (2015) Performance of flexible and binderless polypyrrole/graphene oxide/zinc oxide supercapacitor electrode in a symmetrical two-electrode configuration. Electrochim Acta 157:88–94. https://doi.org/10.1016/j.electacta.2015.01.080

    CAS  Article  Google Scholar 

  23. 23.

    Dillip GR, Banerjee AN, Anitha VC, Deva Prasad Raju B, Joo SW, Min BK (2016) Oxygen vacancy-induced structural, optical, and enhanced supercapacitive performance of zinc oxide anchored graphitic carbon nanofiber hybrid electrodes. ACS Appl Mater Interfaces 8(7):5025–5039. https://doi.org/10.1021/acsami.5b12322

    CAS  Article  PubMed  Google Scholar 

  24. 24.

    Yan D, Wang W, Luo X, Chen C, Zeng Y, Zhu Z (2018) NiCo2O4 with oxygen vacancies as better performance electrode material for supercapacitor. Chem Eng J 334:864–872. https://doi.org/10.1016/j.cej.2017.10.128

    CAS  Article  Google Scholar 

  25. 25.

    Zhai T, Xie S, Yu M, Fang P, Liang C, Lu X, Tong Y (2014) Oxygen vacancies enhancing capacitive properties of MnO2 nanorods for wearable asymmetric supercapacitors. Nano Energy 8:255–263. https://doi.org/10.1016/j.nanoen.2014.06.013

    CAS  Article  Google Scholar 

  26. 26.

    Wang J, Chen R, Xiang L, Komarneni S (2018) Synthesis, properties and applications of ZnO nanomaterials with oxygen vacancies: a review. Ceram Int 44(7):7357–7377. https://doi.org/10.1016/j.ceramint.2018.02.013

    CAS  Article  Google Scholar 

  27. 27.

    Gurav KV, Gang MG, Shin SW, Patil UM, Deshmukh PR, Agawane GL, Suryawanshi MP, Pawar SM, Patil PS, Lokhande CD, Kim JH (2014) Gas sensing properties of hydrothermally grown ZnO nanorods with different aspect ratios. Sensors Actuators B Chem 190:439–445. https://doi.org/10.1016/j.snb.2013.08.069

    CAS  Article  Google Scholar 

  28. 28.

    Kalpana D, Omkumar KS, Kumar SS, Renganathan NG (2006) A novel high power symmetric ZnO/carbon aerogel composite electrode for electrochemical supercapacitor. Electrochim Acta 52(3):1309–1315. https://doi.org/10.1016/j.electacta.2006.07.032

    CAS  Article  Google Scholar 

  29. 29.

    Baek M, Kim D, Yong K (2017) Simple but Effective way to enhance photoelectrochemical solar-water-splitting performance of ZnO nanorod arrays: charge-trapping Zn(OH)2 annihilation and oxygen vacancy generation by vacuum annealing. ACS Appl Mater Interfaces 9(3):2317–2325. https://doi.org/10.1021/acsami.6b12555

    CAS  Article  PubMed  Google Scholar 

  30. 30.

    Fang L, Zhang B, Li W, Zhang J, Huang K, Zhang Q (2014) Fabrication of highly dispersed ZnO nanoparticles embedded in graphene nanosheets for high performance supercapacitors. Electrochim Acta 148:164–169. https://doi.org/10.1016/j.electacta.2014.10.065

    CAS  Article  Google Scholar 

  31. 31.

    Xu Y, Zhou Y, Guo J, Zhang S, Lu Y (2018) Preparation of the poly (3,4-ethylenedioxythiophene):poly(styrenesulfonate)@g-C3N4 composite by a simple direct mixing method for supercapacitor. Electrochim Acta 283:1468–1474. https://doi.org/10.1016/j.electacta.2018.07.115

    CAS  Article  Google Scholar 

  32. 32.

    Guo W, Ming S, Chen Z, Bi J, Ma Y, Wang J, Li T (2018) A novel CVD growth of g-C3N4 ultrathin film on NiCo2O4 nanoneedles/carbon cloth as integrated electrodes for supercapacitors. Chem Electro Chem 5(22):3383–3390. https://doi.org/10.1002/celc.201801045

    CAS  Article  Google Scholar 

  33. 33.

    Chen AY, Zhang TT, Qiu YJ, Wang D, Wang P, Li HJ, Li Y, Yang JH, Wang XY, Xie XF (2019) Construction of nanoporous gold/g-C3N4 heterostructure for electrochemical supercapacitor. Electrochim Acta 294:260–267. https://doi.org/10.1016/j.electacta.2018.10.106

    CAS  Article  Google Scholar 

  34. 34.

    Dong B, Li M, Chen S, Ding D, Wei W, Gao G, Ding S (2017) Formation of g-C3N4@Ni(OH)2 honeycomb nanostructure and asymmetric supercapacitor with high energy and power density. ACS Appl Mater Interfaces 9(21):17890–17896. https://doi.org/10.1021/acsami.7b02693

    CAS  Article  PubMed  Google Scholar 

  35. 35.

    Palanivel B, Mudisoodum Perumal SD, Maiyalagan T, Jayarman V, Ayyappan C, Alagiri M (2019) Rational design of ZnFe2O4/g-C3N4 nanocomposite for enhanced photo-Fenton reaction and supercapacitor performance. Appl Surf Sci 498:143807. https://doi.org/10.1016/j.apsusc.2019.143807

    CAS  Article  Google Scholar 

  36. 36.

    Ouyang Y, Xia X, Ye H, Wang L, Jiao X, Lei W, Hao Q (2018) Three-dimensional hierarchical structure ZnO@C@NiO on carbon cloth for asymmetric supercapacitor with enhanced cycle stability. ACS Appl Mater Interfaces 10(4):3549–3561. https://doi.org/10.1021/acsami.7b16021

    CAS  Article  PubMed  Google Scholar 

  37. 37.

    Chen X, Zhu X, Xiao Y, Yang X (2015) PEDOT/g-C3N4 binary electrode material for supercapacitors. J Electroanal Chem 743:99–104. https://doi.org/10.1016/j.jelechem.2015.02.004

    CAS  Article  Google Scholar 

  38. 38.

    Tang L, C-t J, Xue Y-c, Li L, Wang A-q XG, Liu N, Wu M-h (2017) Fabrication of compressible and recyclable macroscopic g-C3N4/GO aerogel hybrids for visible-light harvesting: a promising strategy for water remediation. Appl Catal B Environ 219:241–248. https://doi.org/10.1016/j.apcatb.2017.07.053

    CAS  Article  Google Scholar 

  39. 39.

    Bu Y, Chen Z (2014) Highly efficient photoelectrochemical anticorrosion performance of C3N4@ZnO composite with quasi-shell–core structure on 304 stainless steel. RSC Adv 4(85):45397–45406. https://doi.org/10.1039/C4RA06641C

    CAS  Article  Google Scholar 

  40. 40.

    Liu C, Qiu Y, Wang F, Wang K, Liang Q, Chen Z (2017) Design of core–shell-structured ZnO/ZnS hybridized with graphite-like C3N4 for highly efficient photoelectrochemical water splitting. Adv Mater Interfaces 4(21):1700681. https://doi.org/10.1002/admi.201700681

    CAS  Article  Google Scholar 

  41. 41.

    Avci C, Imaz I, Carné-Sánchez A, Pariente JA, Tasios N, Pérez-Carvajal J, Alonso MI, Blanco A, Dijkstra M, López C, Maspoch D (2018) Self-assembly of polyhedral metal–organic framework particles into three-dimensional ordered superstructures. Nat Chem 10(1):78–84. https://doi.org/10.1038/nchem.2875

    CAS  Article  Google Scholar 

  42. 42.

    Wang D, Wang Y, Chen Y, Liu W, Wang H, Zhao P, Li Y, Zhang J, Dong Y, Hu S, Yang J (2018) Coal tar pitch derived N-doped porous carbon nanosheets by the in-situ formed g-C3N4 as a template for supercapacitor electrodes. Electrochim Acta 283:132–140. https://doi.org/10.1016/j.electacta.2018.06.151

    CAS  Article  Google Scholar 

  43. 43.

    Li X, Li M, Yang J, Li X, Hu T, Wang J, Sui Y, Wu X, Kong L (2014) Synergistic effect of efficient adsorption g-C3N4/ZnO composite for photocatalytic property. J Phys Chem Solids 75(3):441–446. https://doi.org/10.1016/j.jpcs.2013.12.001

    CAS  Article  Google Scholar 

  44. 44.

    Lotsch BV, Döblinger M, Sehnert J, Seyfarth L, Senker J, Oeckler O, Schnick W (2007) Unmasking melon by a complementary approach employing electron diffraction, solid-state NMR spectroscopy, and theoretical calculations—structural characterization of a carbon nitride polymer. Chem Eur J 13(17):4969–4980. https://doi.org/10.1002/chem.200601759

    CAS  Article  PubMed  Google Scholar 

  45. 45.

    Wang Y, Wang Z, Muhammad S, He J (2012) Graphite-like C3N4 hybridized ZnWO4 nanorods: Synthesis and its enhanced photocatalysis in visible light. Cryst Eng Comm 14(15):5065–5070. https://doi.org/10.1039/C2CE25517K

    CAS  Article  Google Scholar 

  46. 46.

    Liu J, Zhang T, Wang Z, Dawson G, Chen W (2011) Simple pyrolysis of urea into graphitic carbon nitride with recyclable adsorption and photocatalytic activity. J Mater Chem 21(38):14398–14401. https://doi.org/10.1039/C1JM12620B

    CAS  Article  Google Scholar 

  47. 47.

    Djelloul A, Aida MS, Bougdira J (2010) Photoluminescence, FTIR and X-ray diffraction studies on undoped and Al-doped ZnO thin films grown on polycrystalline α-alumina substrates by ultrasonic spray pyrolysis. J Lumin 130(11):2113–2117. https://doi.org/10.1016/j.jlumin.2010.06.002

    CAS  Article  Google Scholar 

  48. 48.

    Xiong G, Pal U, Serrano JG, Ucer KB, Williams RT (2006) Photoluminesence and FTIR study of ZnO nanoparticles: the impurity and defect perspective. Phys Status Solidi C 3(10):3577–3581. https://doi.org/10.1002/pssc.200672164

    CAS  Article  Google Scholar 

  49. 49.

    Wei B, Liang H, Wang R, Zhang D, Qi Z, Wang Z (2018) One-step synthesis of graphitic-C3N4/ZnS composites for enhanced supercapacitor performance. J Energy Chem 27(2):472–477. https://doi.org/10.1016/j.jechem.2017.11.015

    Article  Google Scholar 

  50. 50.

    Samadi M, Shivaee HA, Zanetti M, Pourjavadi A, Moshfegh A (2012) Visible light photocatalytic activity of novel MWCNT-doped ZnO electrospun nanofibers. J Mol Catal A Chem 359:42–48. https://doi.org/10.1016/j.molcata.2012.03.019

    CAS  Article  Google Scholar 

  51. 51.

    Sahu V, Goel S, Sharma RK, Singh G (2015) Zinc oxide nanoring embedded lacey graphene nanoribbons in symmetric/asymmetric electrochemical capacitive energy storage. Nanoscale 7(48):20642–20651. https://doi.org/10.1039/C5NR06083D

    CAS  Article  PubMed  Google Scholar 

  52. 52.

    Zhou J-H, Sui Z-J, Zhu J, Li P, Chen D, Dai Y-C, Yuan W-K (2007) Characterization of surface oxygen complexes on carbon nanofibers by TPD, XPS and FT-IR. Carbon 45(4):785–796. https://doi.org/10.1016/j.carbon.2006.11.019

    CAS  Article  Google Scholar 

  53. 53.

    Wang J, Xia Y, Zhao H, Wang G, Xiang L, Xu J, Komarneni S (2017) Oxygen defects-mediated Z-scheme charge separation in g-C3N4/ZnO photocatalysts for enhanced visible-light degradation of 4-chlorophenol and hydrogen evolution. Appl Catal B Environ 206:406–416. https://doi.org/10.1016/j.apcatb.2017.01.067

    CAS  Article  Google Scholar 

  54. 54.

    Özgür Ü, Alivov YI, Liu C, Teke A, Reshchikov MA, Doğan S, Avrutin V, Cho S-J, Morkoç H (2005) A comprehensive review of ZnO materials and devices. J Appl Phys 98(4):041301. https://doi.org/10.1063/1.1992666

    CAS  Article  Google Scholar 

  55. 55.

    Hai-Bo F, Shao-Yan Y, Pan-Feng Z, Hong-Yuan W, Xiang-Lin L, Chun-Mei J, Qin-Sheng Z, Yong-Hai C, Zhan-Guo W (2007) Investigation of oxygen vacancy and interstitial oxygen defects in ZnO films by photoluminescence and X-Ray photoelectron spectroscopy. Chin Phys Lett 24(7):2108–2111. https://doi.org/10.1088/0256-307x/24/7/089

    Article  Google Scholar 

  56. 56.

    Van de Walle CG (2001) Defect analysis and engineering in ZnO. Phys B Condens Matter 308-310:899–903. https://doi.org/10.1016/S0921-4526(01)00830-4

    Article  Google Scholar 

  57. 57.

    Choi C, Ashby DS, Butts DM, DeBlock RH, Wei Q, Lau J, Dunn B (2020) Achieving high energy density and high power density with pseudocapacitive materials. Nat Rev Mater 5(1):5–19. https://doi.org/10.1038/s41578-019-0142-z

    Article  Google Scholar 

  58. 58.

    Tahir M, Cao C, Butt FK, Idrees F, Mahmood N, Ali Z, Aslam I, Tanveer M, Rizwan M, Mahmood T (2013) Tubular graphitic-C3N4: a prospective material for energy storage and green photocatalysis. J Mater Chem A 1(44):13949–13955. https://doi.org/10.1039/C3TA13291A

    CAS  Article  Google Scholar 

  59. 59.

    Tahir M, Cao C, Mahmood N, Butt FK, Mahmood A, Idrees F, Hussain S, Tanveer M, Ali Z, Aslam I (2014) Multifunctional g-C3N4 nanofibers: a template-free fabrication and enhanced optical, electrochemical, and photocatalyst properties. ACS Appl Mater Interfaces 6(2):1258–1265. https://doi.org/10.1021/am405076b

    CAS  Article  PubMed  Google Scholar 

  60. 60.

    Shi L, Zhang J, Liu H, Que M, Cai X, Tan S, Huang L (2015) Flower-like Ni(OH)2 hybridized g-C3N4 for high-performance supercapacitor electrode material. Mater Lett 145:150–153. https://doi.org/10.1016/j.matlet.2015.01.083

    CAS  Article  Google Scholar 

  61. 61.

    Wan L, Shamsaei E, Easton CD, Yu D, Liang Y, Chen X, Abbasi Z, Akbari A, Zhang X, Wang HJC (2017) ZIF-8 derived nitrogen-doped porous carbon/carbon nanotube composite for high-performance supercapacitor. Carbon 121:330–336. https://doi.org/10.1016/j.carbon.2017.06.017

    CAS  Article  Google Scholar 

  62. 62.

    Liu X, Zhou L, Zhao Y, Bian L, Feng X, Pu Q (2013) Hollow, spherical nitrogen-rich porous carbon shells obtained from a porous organic framework for the supercapacitor. ACS Appl Mater Interfaces 5(20):10280–10287. https://doi.org/10.1021/am403175q

    CAS  Article  PubMed  Google Scholar 

  63. 63.

    Zhong S, Zhan C, Cao DJC (2015) Zeolitic imidazolate framework-derived nitrogen-doped porous carbons as high performance supercapacitor electrode materials. Carbon 85:51–59. https://doi.org/10.1016/j.carbon.2014.12.064

    CAS  Article  Google Scholar 

  64. 64.

    Lai F, Miao YE, Zuo L, Lu H, Huang Y, Liu TJS (2016) Biomass-derived nitrogen-doped carbon nanofiber network: a facile template for decoration of ultrathin nickel-cobalt layered double hydroxide nanosheets as high-performance asymmetric supercapacitor electrode. Small 12(24):3235–3244. https://doi.org/10.1002/smll.201600412

    CAS  Article  Google Scholar 

  65. 65.

    Chen XY, He YY, Song H, Zhang ZJJC (2014) Structure and electrochemical performance of highly nanoporous carbons from benzoate–metal complexes by a template carbonization method for supercapacitor application. Carbon 72:410–420. https://doi.org/10.1016/j.carbon.2014.02.040

    CAS  Article  Google Scholar 

  66. 66.

    Jiang M, Cao X, Zhu D, Duan Y, Zhang JJEA (2016) Hierarchically porous N-doped carbon derived from ZIF-8 nanocomposites for electrochemical applications. Electrochim Acta 196:699–707. https://doi.org/10.1016/j.electacta.2016.02.094

    CAS  Article  Google Scholar 

  67. 67.

    Shayeh JS, Salari H, Daliri A, Omidi MJASS (2018) Decorative reduced graphene oxide/C3N4/Ag2O/conductive polymer as a high performance material for electrochemical capacitors. Appl Surf Sci 447:374–380. https://doi.org/10.1016/j.apsusc.2018.03.249

    CAS  Article  Google Scholar 

  68. 68.

    Zhao Y, Xu L, Huang S, Bao J, Qiu J, Lian J, Xu L, Huang Y, Xu Y, Li H (2017) Facile preparation of TiO2/C3N4 hybrid materials with enhanced capacitive properties for high performance supercapacitors. J Alloys Compounds 702:178–185. https://doi.org/10.1016/j.jallcom.2017.01.125

    CAS  Article  Google Scholar 

  69. 69.

    Senthilkumar B, Khan Z, Park S, Kim K, Ko H, Kim Y (2015) Highly porous graphitic carbon and Ni2P2O7 for a high performance aqueous hybrid supercapacitor. J Mater Chem A 3(43):21553–21561. https://doi.org/10.1039/C5TA04737D

    CAS  Article  Google Scholar 

  70. 70.

    Li F, Chen H, Liu XY, Zhu SJ, Jia JQ, Xu CH, Dong F, Wen ZQ, Zhang YX (2016) Low-cost high-performance asymmetric supercapacitors based on Co2AlO4@MnO2 nanosheets and Fe3O4 nanoflakes. J Mater Chem A 4(6):2096–2104. https://doi.org/10.1039/C5TA09914E

    CAS  Article  Google Scholar 

  71. 71.

    Wei C, Cheng C, Wang S, Xu Y, Wang J, Pang H (2015) Sodium-doped mesoporous Ni2P2O7 hexagonal tablets for high-performance flexible all-solid-state hybrid supercapacitors. Chem Asian J 10(8):1731–1737. https://doi.org/10.1002/asia.201500335

    CAS  Article  PubMed  Google Scholar 

  72. 72.

    Zhao Y, Hu L, Zhao S, Wu L (2016) Preparation of MnCo2O4@Ni(OH)2 Core–shell flowers for asymmetric supercapacitor materials with ultrahigh specific capacitance. Adv Funct Mater 26(23):4085–4093. https://doi.org/10.1002/adfm.201600494

    CAS  Article  Google Scholar 

  73. 73.

    Zhou K, Zhou W, Yang L, Lu J, Cheng S, Mai W, Tang Z, Li L, Chen S (2015) Ultrahigh-performance pseudocapacitor electrodes based on transition metal phosphide nanosheets array via phosphorization: a general and effective approach. Adv Funct Mater 25(48):7530–7538. https://doi.org/10.1002/adfm.201503662

    Article  Google Scholar 

Download references

Acknowledgements

We appreciate the help of Prof. Guanyinsheng Qiu.

Funding

This study is funded by the National Natural Science Foundation of China (51661008 and 21766032), the Zhejiang Provincial Natural Science Foundation of China (LQ19F040005), Jiaxing Public Welfare Research Program (2018AY11007) and Jiaxing University SRT project (CD8517193136).

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Peng Wang or Shan Ji.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(PDF 798 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Shen, J., Wang, P., Jiang, H. et al. MOF derived graphitic carbon nitride/oxygen vacancies-rich zinc oxide nanocomposites with enhanced supercapacitive performance. Ionics (2020). https://doi.org/10.1007/s11581-020-03597-3

Download citation

Keywords

  • Energy storage
  • Supercapacitor
  • ZIF-8
  • Graphitic carbon nitride
  • Zinc oxide