Synthesis and electrochemical properties of CeVO4/Fe3O4 as a novel anode material for lithium-ion batteries


The CeVO4/Fe3O4 compound is successfully obtained by combining hydrothermal treatment and water bath process. The final product has been characterized by X-ray diffraction, scanning electron microscopy, and X-ray photoelectron spectroscopy techniques. The electrochemical properties of the expected compound were tested by a battery test system. The obtained CeVO4/Fe3O4 composite shows higher specific capacity and better cyclability than pure CeVO4 prepared under the same conditions. The initial discharge specific capacities of CeVO4 and CeVO4/Fe3O4 are 671.7 and 964.0 mAh·g−1, respectively. After 100 cycles, CeVO4 and CeVO4/Fe3O4 still maintained their discharge capacities at 416.4 and 875.9 mAh·g−1, representing capacity retention rates of 62.0% and 91.0%, respectively. The possible reaction mechanism for the CeVO4/Fe3O4 composite is also discussed. The CeVO4/Fe3O4 composite may be a prospective anode material for the lithium-ion battery.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6


  1. 1.

    Chu S, Cui Y, Liu N (2017) The path towards sustainable energy. Nat Mater 16(1):16–22

    Article  Google Scholar 

  2. 2.

    Wang J, Tang H, Wang H, Yu R, Wang D (2017) Multi-shelled hollow micro−/nanostructures: promising platforms for lithium-ion batteries. Mater Chem Front 1(3):414–430

    CAS  Article  Google Scholar 

  3. 3.

    Chen P, Wu Y, Zhang Y, Wu TH, Ma Y, Pelkowski C, Yang H, Zhang Y, Hu X, Liu N (2018) A deeply rechargeable zinc anode with pomegranate-inspired nanostructure for high-energy aqueous batteries. J Mater Chem A 6(44):21933–21940

    CAS  Article  Google Scholar 

  4. 4.

    Li X, Ding K, Gao B, Li Q, Li Y, Fu J, Zhang X, Chu PK, Huo K (2017) Freestanding carbon encapsulated mesoporous vanadium nitride nanowires enable highly stable sulfur cathodes for lithium-sulfur batteries. Nano Energy 40:655–662

    CAS  Article  Google Scholar 

  5. 5.

    Li Z, Klein TR, Kim DH, Yang M, Berry JJ, van Hest MFAM, Zhu K (2018) Scalable fabrication of perovskite solar cells. Nat Rev Mater 3(4):18017

    CAS  Article  Google Scholar 

  6. 6.

    Cheng XB, Zhang R, Zhao CZ, Zhang Q (2017) Toward safe lithium metal anode in rechargeable batteries: a review. Chem Rev 117(15):10403–10473

    CAS  Article  Google Scholar 

  7. 7.

    Wang Y, Dou H, Wang J, Ding B, Xu Y, Chang Z, Hao X (2016) Three-dimensional porous MXene/layered double hydroxide composite for high performance supercapacitors. J Power Sources 327:221–228

    CAS  Article  Google Scholar 

  8. 8.

    Zhang J, Zhang W, Han M, Pang J, Xiang Y, Cao G, Yang Y (2018) Synthesis of nitrogen-doped polymeric resin-derived porous carbon for high performance supercapacitors. Microporous Mesoporous Mater 270:204–210

    CAS  Article  Google Scholar 

  9. 9.

    Zhang G, Han Y, Shao C, Chen N, Sun G, Jin X, Gao J, Ji B, Yang H, Qu L (2018) Processing and manufacturing of graphene-based microsupercapacitors. Mater Chem Front 2(10):1750–1764

    CAS  Article  Google Scholar 

  10. 10.

    Li H, Ma H, Yang M, Wang B, Shao H, Wang L, Yu R, Wang D (2017) Highly controlled synthesis of multi-shelled NiO hollow microspheres for enhanced lithium storage properties. Mater Res Bull 87:224–229

    CAS  Article  Google Scholar 

  11. 11.

    Grey CP, Tarascon JM (2017) Sustainability and in situ monitoring in battery development. Nat Mater 16(1):45–56

    Article  Google Scholar 

  12. 12.

    Larcher D, Tarascon JM (2015) Towards greener and more sustainable batteries for electrical energy storage. Nat Chem 7(1):19–29

    CAS  Article  Google Scholar 

  13. 13.

    Pourfarzad H, Shabani-Nooshabadi M, Ganjali MR (2020) High lithium anodic performance of reduced Sn particles on Co metal-organic frameworks for lithium-ion batteries with a long-cycle life. Compos Part B 193:108008

    CAS  Article  Google Scholar 

  14. 14.

    Ruiz V, Pfrang A, Kriston A, Omar N, van den Bossche P, Boon-Brett L (2018) A review of international abuse testing standards and regulations for lithium ion batteries in electric and hybrid electric vehicles. Renew Sust Energ Rev 81:1427–1452

    CAS  Article  Google Scholar 

  15. 15.

    Hu C, Shu H, Shen Z, Zhao T, Liang P, Chen X (2018) Hierarchical MoO3/SnS2, core-shell nanowires with enhanced electrochemical performance for lithium-ion batteries. Phys Chem Chem Phys 20:17171–17179

    CAS  Article  Google Scholar 

  16. 16.

    Jiang L, Qu Y, Ren Z, Yu P, Zhao D, Zhou W, Wang L, Fu H (2015) In situ carbon-coated yolk–shell V2O3 microspheres for lithium-ion batteries. ACS Appl Mater Interfaces 7(3):1595–1601

    CAS  Article  Google Scholar 

  17. 17.

    Pei J, Chen G, Zhang Q et al (2017) Phase separation derived core/shell structured Cu11V6O26/V2O5 microspheres: first synthesis and excellent lithium-ion anode performance with outstanding capacity self-restoration[J]. Small 13(17):1603140

  18. 18.

    Liu H, Cui Y (2018) Microwave-assisted hydrothermal synthesis of hollow flower-like Zn2V2O7 with enhanced cycling stability as electrode for lithium ion batteries. Mater Lett 228:369–371

    CAS  Article  Google Scholar 

  19. 19.

    Liu X, Li G, Zhang D, Chen D, Wang X, Li B, Li L (2019) Fe-doped Li3VO4 as an excellent anode material for lithium ion batteries: optimizing rate capability and cycling stability. Electrochim Acta 308:185–194

    CAS  Article  Google Scholar 

  20. 20.

    Zhang HJ, Shu J, Wei X, Wang KX, Chen JS (2013) Cerium vanadate nanoparticles as a new anode material for lithium ion batteries. RSC Adv 3(20):7403–7407

    CAS  Article  Google Scholar 

  21. 21.

    Cheng S, Ru Q, Shi Z, Gao Y, Liu Y, Hou X, Chen F, Ling FCC (2019) Plant oil–inspired 3D flower-like Zn3V3O8 nanospheres coupled with N-doped carbon as anode material for Li-/Na-ion batteries. Energy Technol 7(11):1900754

    CAS  Article  Google Scholar 

  22. 22.

    Li Y, Fu Y, Chen S, Huang Z, Wang L, Song Y (2019) Porous Fe2O3/Fe3O4@carbon octahedron arrayed on three-dimensional graphene foam for lithium-ion battery. Compos Part B 171:130–137

    CAS  Article  Google Scholar 

  23. 23.

    Ha J, Kim YT, Choi J (2019) In situ precipitation-induced growth of leaf-like CuO nanostructures on Cu–Ni alloys for binder-free anodes in Li-ion batteries[J]. ChemSusChem 13(2):419–425

  24. 24.

    Bie C, Pei J, Chen G, Zhang Q, Sun J, Yu Y, Chen D (2016) Hierarchical Zn3V3O8/C composite microspheres assembled from unique porous hollow nanoplates with superior lithium storage capability. J Mater Chem A 4(43):17063–17072

    CAS  Article  Google Scholar 

  25. 25.

    Chen X, Huang Y, Zhang K, Feng X, Wang M (2018) Porous TiO2 nanobelts coated with mixed transition-metal oxides Sn3O4 nanosheets core-shell composites as high-performance anode materials of lithium ion batteries. Electrochim Acta 259:131–142

    CAS  Article  Google Scholar 

  26. 26.

    Li L, Wang H, Xie Z, An C, Jiang G, Wang Y (2020) 3D graphene-encapsulated nearly monodisperse Fe3O4 nanoparticles as high-performance lithium-ion battery anodes. J Alloys Compd 815:152337

    CAS  Article  Google Scholar 

  27. 27.

    Bie C, Pei J, Wang J, Hua K, Chen D, Chen G (2017) Graphite nanoplates firmly anchored with well-dispersed porous Zn3V2O8 nanospheres: rational fabrication and enhanced lithium storage capability. Electrochim Acta 248:140–149

    CAS  Article  Google Scholar 

  28. 28.

    Ding Y, Hu L, He D, Peng Y, Niu Y, Li Z, Zhang X, Chen S (2020) Design of multishell microsphere of transition metal oxides/carbon composites for lithium ion battery. Chem Eng J 380:122489

    CAS  Article  Google Scholar 

  29. 29.

    Wang WL, Jang J, Nguyen VH, Auxilia FM, Song H, Jang K, Jin EM, Lee GY, Gu HB, Ham MH (2017) Cerium vanadate and reduced graphene oxide composites for lithium-ion batteries. J Alloys Compd 724:1075–1082

    CAS  Article  Google Scholar 

  30. 30.

    Jin R, Liu C, Sun L, Zhang Z, Chen G (2016) Solvothermal synthesis of yolk-shell CeVO4/C microspheres as a high-performance anode for lithium-ion batteries. ChemElectroChem 3(4):644–649

    CAS  Article  Google Scholar 

  31. 31.

    Salimi P, Norouzi O, Pourhosseini SEM (2019) Two-step synthesis of nanohusk Fe3O4 embedded in 3D network pyrolytic marine biochar for a new generation of anode materials for lithium-ion batteries. J Alloys Compd 786:930–937

    CAS  Article  Google Scholar 

  32. 32.

    Lu G, Lun Z, Liang H, Wang H, Li Z, Ma W (2019) In situ fabrication of BiVO4-CeVO4 heterojunction for excellent visible light photocatalytic degradation of levofloxacin. J Alloys Compd 772:122–131

    CAS  Article  Google Scholar 

  33. 33.

    Sun X, Gao G, Yan D, Feng C (2017) Synthesis and electrochemical properties of Fe3O4@MOF core-shell microspheres as an anode for lithium ion battery application. Appl Surf Sci 405:52–59

    CAS  Article  Google Scholar 

  34. 34.

    Zhao L, Liu W, Liu S et al (2015) Fe3O4 nanoplates/carbon network synthesized by in situ pyrolysis of an organic-inorganic layered hybrid as a high-performance lithium-ion battery anode. J Mater Chem A 3:14210–14216

    Article  Google Scholar 

  35. 35.

    Ding C, Zeng YW, Cao LL et al (2016) Hierarchically porous Fe3O4/C nanocomposite microspheres via a CO2 bubble-templated hydrothermal approach as high-rate and high-capacity anode materials for lithium-ion batteries. J Mater Chem A 4(16):5898–5908

    CAS  Article  Google Scholar 

  36. 36.

    Zhou S, Zhou Y, Jiang W et al (2018) Synthesis of Fe3O4 cluster microspheres/graphene aerogels composite as anode for high-performance lithium ion battery[J]. Appl Surf Sci 439:927–933

  37. 37.

    Liu X, Cao Y, Zheng H, Chen X, Feng C (2017) Synthesis and modification of FeVO4 as novel anode for lithium-ion batteries. Appl Surf Sci 394:183–189

    CAS  Article  Google Scholar 

Download references


Financial support was provided by the Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Nankai University, Tianjin 300071, China (111 project, B12015).

Author information



Corresponding author

Correspondence to Chuanqi Feng.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Yang, X., Wu, H., Wang, S. et al. Synthesis and electrochemical properties of CeVO4/Fe3O4 as a novel anode material for lithium-ion batteries. Ionics (2020).

Download citation


  • Inorganic compounds
  • Anode material
  • Lithium-ion battery
  • Electrochemical properties
  • Chemical synthesis