Purpald containing poly(2,5-dithienylpyrrole)-based multifunctional conducting polymer: synthesis, characterization, and electrochromic properties

Abstract

Synthesis of novel purpald (4-amino-5-hydrazino-1,2,4-triazole-3-thiol) containing 2,5-di(2-thienyl)pyrrole (TPTP) derivative monomer has been successfully achieved. Its functional conductive polymer (pTPTP) obtained electrochemically has been characterized and electrooptical properties have been investigated. In this way, multifunctional conductive polymer film has been formed by means of advanced functionalization of thiol and amine group on the polymeric backbone that can be applied in many fields such as metal sensor, biosensor sensor, and biochemical imaging. The potential usage of this multifunctional conductive polymer film in smart windows application has been investigated and the optical contrast value which is the most important parameter of this technology has been measured as 75%.

This is a preview of subscription content, log in to check access.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Data availability

The raw/processed data required to reproduce these findings cannot be shared at this time due to technical or time limitations.

References

  1. 1.

    Liang C, Wang H (2017) Indacenodithiophene-based D-A conjugated polymers for application in polymer solar cells. Org Electron Phys, Mater Appl 50:443–457. https://doi.org/10.1016/j.orgel.2017.06.059

    CAS  Article  Google Scholar 

  2. 2.

    Kim NK, Shin ES, Noh YY, Kim DY (2018) A selection rule of solvent for highly aligned diketopyrrolopyrrole-based conjugated polymer film for high performance organic field-effect transistors. Org Electron Phys, Mater Appl 55:6–14. https://doi.org/10.1016/j.orgel.2018.01.006

    CAS  Article  Google Scholar 

  3. 3.

    Han R, Lu S, Wang Y et al (2015) Influence of monomer concentration during polymerization on performance and catalytic mechanism of resultant poly(3,4-ethylenedioxythiophene) counter electrodes for dye-sensitized solar cells. Electrochim Acta 173:796–803. https://doi.org/10.1016/j.electacta.2015.05.130

    CAS  Article  Google Scholar 

  4. 4.

    Qin L, Zhen S, Xu J et al (2014) Poly(thieno[3,4- b ]-1,4-oxathiane): medium effect on electropolymerization and electrochromic performance. Langmuir 30:15581–15589. https://doi.org/10.1021/la503948f

    CAS  Article  PubMed  Google Scholar 

  5. 5.

    Zhang Z, Zheng W, Cheng H et al (2013) Tricolor electrochromism of copolymer based on selenophene and 3,4-ethylenedioxythiophene. Synth Met 162:2428–2432. https://doi.org/10.1016/j.synthmet.2012.11.026

    CAS  Article  Google Scholar 

  6. 6.

    Gicevicius M, Bagdziunas G, Abduloglu Y, Ramanaviciene A, Gumusay O, Ak M, Soganci T, Ramanavicius A (2018) Experimental and theoretical investigations of an electrochromic azobenzene and 3,4-ethylenedioxythiophene-based electrochemically formed polymeric semiconductor. ChemPhysChem 19:2735–2740. https://doi.org/10.1002/cphc.201800478

    CAS  Article  PubMed  Google Scholar 

  7. 7.

    Ak M, Camurlu P, Yılmaz F et al (2006) Electrochromic properties and electrochromic device application of copolymer ofN-(4-(3-thienyl methylene)-oxycarbonylphenyl)maleimide with thiophene. J Appl Polym Sci 102:4500–4505. https://doi.org/10.1002/app.24834

    CAS  Article  Google Scholar 

  8. 8.

    Guzel M, Ak M (2019) A solution-processable electrochromic polymer designed with Reactive Yellow 160 and 2-hydroxy carbazole. Org Electron 75:105436. https://doi.org/10.1016/j.orgel.2019.105436

    CAS  Article  Google Scholar 

  9. 9.

    Abashev GG, Bushueva AY, Shklyaeva EV (2011) N-substituted 2,5-di(2-thienyl)pyrroles: application, production, properties, and electrochemical polymerization (review). Chem Heterocycl Compd 47:130–154

    CAS  Article  Google Scholar 

  10. 10.

    Beaujuge PM, Reynolds JR (2010) Color control in π-conjugated organic polymers for use in electrochromic devices. Chem Rev 110:268–320. https://doi.org/10.1021/cr900129a

    CAS  Article  PubMed  Google Scholar 

  11. 11.

    Gumusay O, Soganci T, Soyleyici HC et al (2017) Electrochemistry of secondary amine substituted 2,5-di(2-thienyl)pyrrole derivative and its copolymer. J Electrochem Soc 164:421–429. https://doi.org/10.1149/2.0291707jes

    CAS  Article  Google Scholar 

  12. 12.

    Guzel M, Soganci T, Karatas E, Ak M (2018) Donor-acceptor type super-structural triazine cored conducting polymer containing carbazole and quinoline for high-contrast electrochromic device. J Electrochem Soc 165:316–323. https://doi.org/10.1149/2.1201805jes

  13. 13.

    Karatas E, Guzel M, Ak M (2017) Asymmetric star-shaped functionalized triazine architecture and its electrochromic device application. J Electrochem Soc 164:H463–H469. https://doi.org/10.1149/2.0731707jes

    CAS  Article  Google Scholar 

  14. 14.

    Kurtay G, Soganci T, Ak M, Gullu M (2016) Synthesis and computational bandgap engineering of new 3,4-Alkylenedioxypyrrole (ADOP) derivatives and investigation of their electrochromic properties. J Electrochem Soc 163:H896–H905. https://doi.org/10.1149/2.0131610jes

    CAS  Article  Google Scholar 

  15. 15.

    Lee SH, Cho W, Hwang DK et al (2017) Synthesis of poly(3,4-ethylene dioxythiophene)/ammonium vanadate nanofiber composites for counter electrode of dye-sensitized solar cells. Electrochim Acta 245:607–614. https://doi.org/10.1016/j.electacta.2017.05.194

    CAS  Article  Google Scholar 

  16. 16.

    Thomas JP, Rahman MA, Srivastava S, Kang JS, McGillivray D, Abd-Ellah M, Heinig NF, Leung KT (2018) Highly conducting hybrid silver-nanowire-embedded poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) for high-efficiency planar silicon/organic heterojunction solar cells. ACS Nano 12:9495–9503. https://doi.org/10.1021/acsnano.8b04848

    CAS  Article  PubMed  Google Scholar 

  17. 17.

    Han Y, Dai L (2019) Conducting polymers for flexible supercapacitors. Macromol Chem Phys 220:1800355. https://doi.org/10.1002/macp.201800355

    CAS  Article  Google Scholar 

  18. 18.

    Ghorbani Zamani F, Moulahoum H, Ak M et al (2019) Current trends in the development of conducting polymers-based biosensors. TrAC Trends Anal Chem 118:264–276. https://doi.org/10.1016/j.trac.2019.05.031

    CAS  Article  Google Scholar 

  19. 19.

    Unlu CG, Acet M, Ocakoglu K et al (2018) An effective non-enzymatic biosensor platform based on copper nanoparticles decorated by sputtering on CVD graphene. Sensors Actuators B Chem 273:1501–1507. https://doi.org/10.1016/j.snb.2018.07.064

    CAS  Article  Google Scholar 

  20. 20.

    Olgac R, Soganci T, Baygu Y et al (2017) Zinc(II) phthalocyanine fused in peripheral positions octa-substituted with alkyl linked carbazole: synthesis, electropolymerization and its electro-optic and biosensor applications. Biosens Bioelectron 98:202–209. https://doi.org/10.1016/j.bios.2017.06.028

  21. 21.

    Tekbaşoğlu TY, Soganci T, Ak M et al (2017) Enhancing biosensor properties of conducting polymers via copolymerization: synthesis of EDOT-substituted bis(2-pyridylimino)isoindolato-palladium complex and electrochemical sensing of glucose by its copolymerized film. Biosens Bioelectron. https://doi.org/10.1016/j.bios.2016.08.020

  22. 22.

    Ayranci R, Torlak Y, Soganci T, Ak M (2018) Trilacunary Keggin type polyoxometalate-conducting polymer composites for amperometric glucose detection. J Electrochem Soc 165:B638–B643. https://doi.org/10.1149/2.1061813jes

    CAS  Article  Google Scholar 

  23. 23.

    Makelane HR, John SV, Waryo TT et al (2016) AC voltammetric transductions and sensor application of a novel dendritic poly(propylene thiophenoimine)-co-poly(3-hexylthiophene) star co-polymer. Sensors Actuators B Chem 227:320–327. https://doi.org/10.1016/j.snb.2015.12.020

    CAS  Article  Google Scholar 

  24. 24.

    Soganci T, Baygu Y, Kabay N, Gök Y, Ak M (2018) Comparative investigation of peripheral and nonperipheral zinc phthalocyanine-based polycarbazoles in terms of optical, electrical, and sensing properties. ACS Appl Mater Interfaces 10:21654–21665. https://doi.org/10.1021/acsami.8b06206

    CAS  Article  PubMed  Google Scholar 

  25. 25.

    Göktuğ Ö, Soganci T, Ak M, Şener MK (2017) Efficient synthesis of EDOT modified ABBB-type unsymmetrical zinc phthalocyanine: optoelectrochromic and glucose sensing properties of its copolymerized film. New J Chem 41:14080–14087. https://doi.org/10.1039/C7NJ03250A

    Article  Google Scholar 

  26. 26.

    Xu D, Wang H, Li F et al (2019) Conformal conducting polymer shells on V2O5 nanosheet arrays as a high-rate and stable zinc-ion battery cathode. Adv Mater Interfaces 6:1801506. https://doi.org/10.1002/admi.201801506

    CAS  Article  Google Scholar 

  27. 27.

    Anilkumar KM, Jinisha B, Manoj M et al (2018) Layered sulfur/PEDOT:PSS nano composite electrodes for lithium sulfur cell applications. Appl Surf Sci 442:556–564. https://doi.org/10.1016/j.apsusc.2018.02.178

    CAS  Article  Google Scholar 

  28. 28.

    Kim J, Chae S, Yi A et al Syntheses and optical, electrochemical, and photovoltaic properties of polymers with 6-(2-thienyl)-4H-thieno[2,3-b]indole with a variety of electron-deficient units. J Appl Polym Sci:47624. https://doi.org/10.1002/app.47624

  29. 29.

    Ayranci R, Demirkol D, Ak M, Timur S (2015) Ferrocene-functionalized 4-(2,5-di(thiophen-2-yl)-1H-pyrrol-1-yl)aniline: a novel design in conducting polymer-based electrochemical biosensors. Sensors 15:1389–1403. https://doi.org/10.3390/s150101389

    CAS  Article  PubMed  Google Scholar 

  30. 30.

    Koyuncu S, Zafer C, Sefer E et al (2009) A new conducting polymer of 2,5-bis(2-thienyl)-1H-(pyrrole) (SNS) containing carbazole subunit: electrochemical, optical and electrochromic properties. Synth Met 159:2013–2021. https://doi.org/10.1016/j.synthmet.2009.07.027

    CAS  Article  Google Scholar 

  31. 31.

    Yavuz A, Bezgin B, Aras L, Önal AM (2010) Synthesis and electropolymerization of the phthaocyanines with 4-(2,5-di-2-thiophen-2-yl-pyrrol-1-yl) substituents. J Electroanal Chem 639:116–122. https://doi.org/10.1016/j.jelechem.2009.11.033

    CAS  Article  Google Scholar 

  32. 32.

    Tuncagil S, Ozdemir C, Demirkol DO, Timur S, Toppare L (2011) Gold nanoparticle modified conducting polymer of 4-(2,5-di(thiophen-2-yl)- 1H-pyrrole-1-l) benzenamine for potential use as a biosensing material. Food Chem 127:1317–1322. https://doi.org/10.1016/j.foodchem.2011.01.089

    CAS  Article  PubMed  Google Scholar 

  33. 33.

    Söyleyici HC, Ak M, Şahin Y et al (2013) New class of 2,5-di(2-thienyl)pyrrole compounds and novel optical properties of its conducting polymer. Mater Chem Phys 142:303–310. https://doi.org/10.1016/j.matchemphys.2013.07.019

    CAS  Article  Google Scholar 

  34. 34.

    Galindo MA, Hannant J, Harrington RW, Clegg W, Horrocks BR, Pike AR, Houlton A (2011) Pyrrolyl-, 2-(2-thienyl)pyrrolyl- and 2,5-bis(2-thienyl)pyrrolyl-nucleosides: synthesis, molecular and electronic structure, and redox behaviour of C5-thymidine derivatives. Org Biomol Chem 9:1555–1564. https://doi.org/10.1039/c0ob00466a

    CAS  Article  PubMed  Google Scholar 

  35. 35.

    Just PE, Chane-Ching KI, Lacaze PC (2002) Synthesis of 2,5-di(2-thienyl)-1H-pyrrole N-linked with conjugated bridges. Tetrahedron 58:3467–3472. https://doi.org/10.1016/S0040-4020(02)00328-9

    CAS  Article  Google Scholar 

  36. 36.

    Yildiz E, Camurlu P, Tanyeli C et al (2008) A soluble conducting polymer of 4-(2,5-di(thiophen-2-yl)-1H-pyrrol-1-yl)benzenamine and its multichromic copolymer with EDOT. J Electroanal Chem 612:247–256. https://doi.org/10.1016/j.jelechem.2007.10.004

    CAS  Article  Google Scholar 

  37. 37.

    El’shina TS, Sosnin EA, Shklyaeva EV, Abashev GG (2013) N-substituted 2,5-Di(2-thienyl)pyrroles. Synthesis and electrochemical properties. Russ J Gen Chem 83:726–730. https://doi.org/10.1134/S1070363213040208

    CAS  Article  Google Scholar 

  38. 38.

    Soganci T (2019) Effects of N-substitution group on electrochemical, electrochromic and optical properties of dithienyl derivative. J Electrochem Soc 166:1112–1118. https://doi.org/10.1149/2.0341902jes

    CAS  Article  Google Scholar 

  39. 39.

    Yiğit D, Hacioglu SO, Güllü M, Toppare L (2016) Synthesis and spectroelectrochemical characterization of multi-colored novel poly(3,6-dithienylcarbazole) derivatives containing azobenzene and coumarin chromophore units. Electrochim Acta 196:140–152. https://doi.org/10.1016/j.electacta.2016.02.168

    CAS  Article  Google Scholar 

  40. 40.

    Yiğit D, Udum YA, Güllü M, Toppare L (2014) Electrochemical and optical properties of novel terthienyl based azobenzene, coumarine and fluorescein containing polymers: multicolored electrochromic polymers. J Electroanal Chem 712:215–222. https://doi.org/10.1016/j.jelechem.2013.11.028

    CAS  Article  Google Scholar 

  41. 41.

    Zhou W, Xu J, Du Y, Yang P (2010) Electrochemical polymerization of p-terphenyl in mixed electrolyte of boron trifluoride diethyl etherate and CH2Cl2. J Appl Polym Sci 117:2688–2694. https://doi.org/10.1002/app.30927

    CAS  Article  Google Scholar 

  42. 42.

    Xu Z, Du H, Yin M et al (2018) Benzothiadiazole, hexylthiophen and alkoxy benzene based solution processable copolymer: effect of the electron withdrawing substituents (fluorine atoms) on electrochemical, optical and electrochromic properties. Org Electron 61:1–9. https://doi.org/10.1016/j.orgel.2018.06.048

    CAS  Article  Google Scholar 

  43. 43.

    Reeves BD, Grenier CRG, Argun AA et al (2004) Spray coatable electrochromic dioxythiophene polymers with high coloration efficiencies. Macromolecules 37:7559–7569. https://doi.org/10.1021/ma049222y

    CAS  Article  Google Scholar 

  44. 44.

    Soganci T, Kurtay G, Ak M, Güllü M (2014) Preparation of an EDOT-based polymer: optoelectronic properties and electrochromic device application. RSC Adv 5:2630–2639. https://doi.org/10.1039/C4RA13060J

    CAS  Article  Google Scholar 

  45. 45.

    Ak M, Gancheva V, Terlemezyan L, Tanyeli C, Toppare L (2008) Synthesis of a dipyrromethane functionalized monomer and optoelectrochromic properties of its polymer. Eur Polym J 44(8):2567–2573

  46. 46.

    Soganci T, Ak M, Giziroglu E, Soyleyici HC (2016) Smart window application of a new hydrazide type SNS derivative. RSC Adv 6:1744–1749. https://doi.org/10.1039/c5ra24759d

    CAS  Article  Google Scholar 

  47. 47.

    Wang G, Fu X, Huang J et al (2010) Synthesis and spectroelectrochemical properties of two new dithienylpyrroles bearing anthraquinone units and their polymer films. Electrochim Acta 55:6933–6940. https://doi.org/10.1016/j.electacta.2010.07.012

    CAS  Article  Google Scholar 

  48. 48.

    Ak M, Soğancı T, Gümüşay O, Çukurluoğlu S (2017) Synthesis of conducting polymer with green chemistry and its electrochromic properties. Pamukkale Univ J Eng Sci 23:753–758. https://doi.org/10.5505/pajes.2016.66674

    Article  Google Scholar 

Download references

Acknowledgments

One of the authors (M. Ak) gratefully thank BAGEP award of the Science Academy.

Funding

The authors received PAUBAP 2016FEBE040 grants.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Metin Ak.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Gumusay, O., Soganci, T., Durur, S. et al. Purpald containing poly(2,5-dithienylpyrrole)-based multifunctional conducting polymer: synthesis, characterization, and electrochromic properties. Ionics 26, 3501–3511 (2020). https://doi.org/10.1007/s11581-020-03495-8

Download citation

Keywords

  • Electropolymerization
  • Purpald
  • Conducting polymer
  • Electrochromic device