Co loaded on graphene with interfacial structure as high performance catalyst for 4e ORR: a DFT study

Abstract

On the basis of density functional theory (DFT), Co/C (carbon) catalyst was designed theoretically to improve the catalytic activity of the carbon-supported cobalt composite catalyst. The quantum chemical information was analyzed to explore the rules between structures, and then high-activity catalysts were selected according to molecular orbital energy. Theoretical calculation showed that the quaternary Co catalyst structure is the most stable structure with high catalyst activity. Then, the nitrogen (N) atoms were introduced to further improve the catalyst activity, and finally the best catalyst was selected as the quaternary atomically loaded N-doped Co/C catalyst. The oxygen reduction reaction (ORR) mechanism of selected Co/C catalyst was studied through theoretical calculation. The results showed that the overall process stability of the 4e ORR pathway on C and N atoms is high, and the activation effect of the reactant O2 is optimal; the overall energy barrier span is significantly lower than that without the catalyst.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. 1.

    Liu A, Gao M, Ren X, Meng F, Yang Y, Gao L, Yang Q, Ma T (2020) Current progress in electrocatalytic carbon dioxide reduction to fuels on heterogeneous catalysts. J Mater Chem A. https://doi.org/10.1039/C9TA11966C

  2. 2.

    Zhou Y, Guan X, Zhou H, Ramadoss K, Adam S, Liu H, Lee S, Shi J, Tsuchiya M, Fong DD, Ramanathan S (2016) Strongly correlated perovskite fuel cells. Nature 534:231–234

    CAS  PubMed  Google Scholar 

  3. 3.

    Mong AL, Kim D (2018) Alkaline anion exchange membrane from poly(arylene ether ketone)-g-polyimidazolium copolymer for enhanced hydroxide ion conductivity and thermal, mechanical, and hydrolytic stability. Electrochim Acta 290:544–555

    Google Scholar 

  4. 4.

    Chen Y, Bu Y, Zhao B, Zhang Y, Ding D, Hu R, Wei T, Rainwater B, Ding Y, Chen F (2016) A durable, high-performance hollow-nanofiber cathode for intermediate-temperature fuel cells. Nano Energy 26:90–99

    CAS  Google Scholar 

  5. 5.

    Jiang K, Zhang H-X, Zou S, Cai W-B (2014) Electrocatalysis of formic acid on palladium and platinum surfaces: from fundamental mechanisms to fuel cell applications. Phys Chem Chem Phys 16:20360–20376

    CAS  PubMed  Google Scholar 

  6. 6.

    Yang J, Ghobadian S, Goodrich PJ, Montazami R, Hashemi N (2013) Miniaturized biological and electrochemical fuel cells: challenges and applications. Phys Chem Chem Phys 15:14147–14161

    CAS  PubMed  Google Scholar 

  7. 7.

    Ren X, Lv Q, Liu L, Liu B, Wang Y, Liu A, Wu G (2020) Current progress of Pt and Pt-based electrocatalysts used for fuel cells. Sustainable Energy Fuels 4:15–30

    CAS  Google Scholar 

  8. 8.

    Pei P, Huang S, Chen D, Li Y, Wu Z, Ren P, Wang K, Jia X (2019) A high-energy-density and long-stable-performance zinc-air fuel cell system. Appl Energy 241:124–129

    CAS  Google Scholar 

  9. 9.

    Oh TH, Jang B, Kwon S (2015) Estimating the energy density of direct borohydride-hydrogen peroxide fuel cell systems for air-independent propulsion applications. Energy 90:980–986

    CAS  Google Scholar 

  10. 10.

    Gurau B, Smotkin ES (2002) Methanol crossover in direct methanol fuel cells: a link between power and energy density. J Power Sources 112:339–352

    CAS  Google Scholar 

  11. 11.

    Waters DF, Cadou CP (2014) Estimating the neutrally buoyant energy density of a Rankine-cycle/fuel-cell underwater propulsion system. J Power Sources 248:714–720

    CAS  Google Scholar 

  12. 12.

    Bashyam R, Zelenay P (2006) A class of non-precious metal composite catalysts for fuel cells. Nature 443:63–66

    CAS  PubMed  Google Scholar 

  13. 13.

    Lefevre M, Proietti E, Jaouen F, Dodelet J-P (2009) Iron-based catalysts with improved oxygen reduction activity in polymer electrolyte fuel cells. Science 324:71–74

    CAS  PubMed  Google Scholar 

  14. 14.

    Strasser P, Koh S, Anniyev T, Greeley J, More K, Yu C, Liu Z, Kaya S, Nordlund D, Ogasawara H, Toney MF, Nilsson A (2010) Lattice-strain control of the activity in dealloyed core-shell fuel cell catalysts. Nat Chem 2:454–460

    CAS  PubMed  Google Scholar 

  15. 15.

    Proietti E, Jaouen F, Lefevre M, Larouche N, Tian J, Herranz J, Dodelet J-P (2011) Iron-based cathode catalyst with enhanced power density in polymer electrolyte membrane fuel cells. Nat Commun 2:416

  16. 16.

    Suntivich J, Gasteiger HA, Yabuuchi N, Nakanishi H, Goodenough JB, Shao-Horn Y (2011) Design principles for oxygen-reduction activity on perovskite oxide catalysts for fuel cells and metal-air batteries. Nat Chem 3:546–550

    CAS  PubMed  Google Scholar 

  17. 17.

    Zhao X, Yin M, Ma L, Liang L, Liu C, Liao J, Lu T, Xing W (2011) Recent advances in catalysts for direct methanol fuel cells. Energy Environ Sci 4:2736–2753

    CAS  Google Scholar 

  18. 18.

    Jia Q, Ramaswamy N, Hafiz H, Tylus U, Strickland K, Wu G, Barbiellini B, Bansil A, Holby EF, Zelenay P, Mukerjee S (2015) Experimental observation of redox-induced Fe-N switching behavior as a determinant role for oxygen reduction activity. ACS Nano 9:12496–12505

    CAS  PubMed  Google Scholar 

  19. 19.

    Wang X, Zhang H, Lin H, Gupta S, Wang C, Tao Z, Fu H, Wang T, Zheng J, Wu G, Li X (2016) Directly converting Fe-doped metal organic frameworks into highly active and stable Fe-N-C catalysts for oxygen reduction in acid. Nano Energy 25:110–119

    CAS  Google Scholar 

  20. 20.

    Wang XX, Cullen DA, Pan Y-T, Hwang S, Wang M, Feng Z, Wang J, Engelhard MH, Zhang H, He Y, Shao Y, Su D, More KL, Spendelow JS, Wu G (2018) Nitrogen-coordinated single cobalt atom catalysts for oxygen reduction in proton exchange membrane fuel cells. Adv Mater 30:1706758

  21. 21.

    Wu G, More KL, Johnston CM, Zelenay P (2011) High-performance electrocatalysts for oxygen reduction derived from polyaniline, iron, and cobalt. Science 332:443–447

    CAS  PubMed  Google Scholar 

  22. 22.

    Zhu G, Liu F, Wang Y, Wei Z, Wang W (2019) Systematic exploration of N,C coordination effects on the ORR performance of Mn-Nx doped graphene catalysts based on DFT calculations. Phys Chem Chem Phys 21:12826–12836

    CAS  PubMed  Google Scholar 

  23. 23.

    Feng L, Liu Y, Zhao J (2015) Fe- and Co-P4-embedded graphenes as electrocatalysts for the oxygen reduction reaction: theoretical insights. Phys Chem Chem Phys 17:30687–30694

    CAS  PubMed  Google Scholar 

  24. 24.

    Mei D, He ZD, Zheng YL, Jiang DC, Chen Y-X (2014) Mechanistic and kinetic implications on the ORR on a Au(100) electrode: pH, temperature and H-D kinetic isotope effects. Phys Chem Chem Phys 16:13762–13773

    CAS  PubMed  Google Scholar 

  25. 25.

    Wei G-F, Liu Z-P (2013) Optimum nanoparticles for electrocatalytic oxygen reduction: the size, shape and new design. Phys Chem Chem Phys 15:18555–18561

    CAS  PubMed  Google Scholar 

  26. 26.

    Jung W, Xie TY, Kim T, Ganesan P, Popov BN (2015) Highly active and durable Co-doped Pt/CCC cathode catalyst for polymer electrolyte membrane fuel cells. Electrochim Acta 167:1–12

    CAS  Google Scholar 

  27. 27.

    Li D, Wang C, Strmcnik DS, Tripkovic DV, Sun X, Kang Y, Chi M, Snyder JD, van der Vliet D, Tsai Y, Stamenkovic VR, Sun S, Markovic NM (2014) Functional links between Pt single crystal morphology and nanoparticles with different size and shape: the oxygen reduction reaction case. Energy Environ Sci 7:4061–4069

    CAS  Google Scholar 

  28. 28.

    Andreadis G, Tsiakaras P (2006) Ethanol crossover and direct ethanol PEM fuel cell performance modeling and experimental validation. Chem Eng Sci 61:7497–7508

    CAS  Google Scholar 

  29. 29.

    Hao Y, Wang X, Shen J, Yuan J, Wang AJ, Niu L, Huang S (2016) One-pot synthesis of single-crystal Pt nanoplates uniformly deposited on reduced graphene oxide, and their high activity and stability on the electrocalalytic oxidation of methanol. Nanotechnology 27:145602

    PubMed  Google Scholar 

  30. 30.

    Cho KY, Yeom YS, Seo HY, Lee AS, Huy Do X, Hong JP, Jeong H-K, Baek K-Y, Yoon HG (2017) Fine-sized Pt nanoparticles dispersed on PdPt bimetallic nanocrystals with non-covalently functionalized graphene toward synergistic effects on the oxygen reduction reaction. Electrochim Acta 257:412–422

    CAS  Google Scholar 

  31. 31.

    Cui X, Li H, Yu G, Yuan M, Yang J, Xu D, Hou Y, Dong Z (2017) Pt coated Co nanoparticles supported on N-doped mesoporous carbon as highly efficient, magnetically recyclable and reusable catalyst for hydrogen generation from ammonia borane. Int J Hydrog Energy 42:27055–27065

    CAS  Google Scholar 

  32. 32.

    Han Y, Li P, Liu J, Wu S, Ye Y, Tian Z, Liang C (2018) Strong Fe3+-O(H)-Pt interfacial interaction induced excellent stability of Pt/NiFe-LDH/rGO electrocatalysts. Sci Rep 8:1359

    PubMed  PubMed Central  Google Scholar 

  33. 33.

    Kim Y, Lee H, Lim T, Kim H-J, Kwon OJ (2017) Non-conventional Pt-Cu alloy/carbon paper electrochemical catalyst formed by electrodeposition using hydrogen bubble as template. J Power Sources 364:16–22

    CAS  Google Scholar 

  34. 34.

    Wu Y, Wang D, Niu Z, Chen P, Zhou G, Li Y (2012) A strategy for designing a concave Pt-Ni alloy through controllable chemical etching. Angew Chem 51:12524–12528

    CAS  Google Scholar 

  35. 35.

    Peng X, Zhao S, Omasta TJ, Roller JM, Mustain WE (2017) Activity and durability of Pt-Ni nanocage electocatalysts in proton exchange membrane fuel cells. App Catal B: Environ 203:927–935

    CAS  Google Scholar 

  36. 36.

    Li W, Li C, Qi J, Chen X, Wang P, Luo J, Huang Z, Liang C (2019) Hollow PtNi nanochains as highly efficient and stable oxygen reduction reaction catalysts. Chemistryselect 4:963–971

    CAS  Google Scholar 

  37. 37.

    Li B, Wang J, Gao X, Qin C, Yang D, Lv H, Xiao Q, Zhang C (2019) High performance octahedral PtNi/C catalysts investigated from rotating disk electrode to membrane electrode assembly. Nano Res 12:281–287

    CAS  Google Scholar 

  38. 38.

    Zhang G-R, Woellner S (2018) Hollowed structured PtNi bifunctional electrocatalyst with record low total overpotential for oxygen reduction and oxygen evolution reactions. Appl Catal B-Environ 222:26–34

    CAS  Google Scholar 

  39. 39.

    Song X, Luo S, Fan X, Tang M, Zhao X, Chen W, Yang Q, Quan Z (2018) Controlled synthesis of PtNi hexapods for enhanced oxygen reduction reaction. Front Chem 6:468

  40. 40.

    Liu J, Li Y, Wu Z, Ruan M, Song P, Jiang L, Wang Y, Sun G, Xu W (2018) Pt0.61Ni/C for high-efficiency cathode of fuel cells with superhigh platinum utilization. J Phys Chem C 122:14691–14697

    CAS  Google Scholar 

  41. 41.

    Kaewsai D, Hunsom M (2018) Comparative study of the ORR activity and stability of Pt and PtM (M = Ni, Co, Cr, Pd) supported on polyaniline/carbon nanotubes in a PEM fuel cell. Nanomater-Basel 8:299

  42. 42.

    Gocyla M, Kuehl S, Shviro M, Heyen H, Selve S, Dunin-Borkowski RE, Heggen M, Strasser P (2018) Shape stability of octahedral PtNi nanocatalysts for electrochemical oxygen reduction reaction studied by in situ transmission electron microscopy. ACS Nano 12:5306–5311

    CAS  PubMed  Google Scholar 

  43. 43.

    Chung HT, Cullen DA, Higgins D, Sneed BT, Holby EF, More KL, Zelenay P (2017) Direct atomic-level insight into the active sites of a high-performance PGM-free ORR catalyst. Science 357:479

    CAS  PubMed  Google Scholar 

  44. 44.

    Wang XX, Prabhakaran V, He Y, Shao Y, Wu G (2019) Iron-free cathode catalysts for proton-exchange-membrane fuel cells: cobalt catalysts and the peroxide mitigation approach. Adv Mater 31:1805126

  45. 45.

    Li JK, Ghoshal S, Liang WT, Sougrati MT, Jaouen F, Halevi B, McKinney S, McCool G, Ma CR, Yuan XX, Ma ZF, Mukerjee S, Jia QY (2016) Structural and mechanistic basis for the high activity of Fe-N-C catalysts toward oxygen reduction. Energy Environ Sci 9:2418–2432

    CAS  Google Scholar 

  46. 46.

    Zhang H, Chung HT, Cullen DA, Wagner S, Kramm UI, More KL, Zelenay P, Wu G (2019) High-performance fuel cell cathodes exclusively containing atomically dispersed iron active sites. Energy Environ Sci 12:2548–2558

  47. 47.

    Gubler L, Dockheer SM, Koppenol WH (2011) Radical (HO•, H• and HOO•) formation and ionomer degradation in polymer electrolyte fuel cells. J Electrochem Soc 158:B755–B769

    CAS  Google Scholar 

  48. 48.

    R. F. Service (2002) Shrinking fuel cells promise power in your pocket. Science 296:1222

    Google Scholar 

  49. 49.

    Thompson ST, Wilson AR, Zelenay P, Myers DJ, More KL, Neyerlin KC, Papageorgopoulos D (2018) ElectroCat: DOE’s approach to PGM-free catalyst and electrode R&D. Solid State Ionics 319:68–76

    CAS  Google Scholar 

  50. 50.

    Li J, Chen M, Cullen DA, Hwang S, Wang M, Li B, Liu K, Karakalos S, Lucero M, Zhang H, Lei C, Xu H, Sterbinsky GE, Feng Z, Su D, More KL, Wang G, Wang Z, Wu G (2018) Atomically dispersed manganese catalysts for oxygen reduction in proton-exchange membrane fuel cells. Nat Catal 1:935–945

  51. 51.

    He Y, Hwang S, Cullen DA, Uddin MA, Langhorst L, Li B, Karakalos S, Kropf AJ, Wegener EC, Sokolowski J, Chen M, Myers D, Su D, More KL, Wang G, Litster S, Wu G (2019) Highly active atomically dispersed CoN4 fuel cell cathode catalysts derived from surfactant-assisted MOFs: carbon-shell confinement strategy. Energy Environ Sci 12:250–260

    CAS  Google Scholar 

  52. 52.

    Xia W, Zou R, An L, Xia D, Guo S (2015) A metal–organic framework route to in situ encapsulation of Co@Co3O4@C core@bishell nanoparticles into a highly ordered porous carbon matrix for oxygen reduction. Energy Environ Sci 8:568–576

    CAS  Google Scholar 

  53. 53.

    Wu G, Zelenay P (2013) Nanostructured nonprecious metal catalysts for oxygen reduction reaction. Acc Chem Res 46:1878–1889

    CAS  PubMed  Google Scholar 

  54. 54.

    Lv Q, Ren X, Liu L, Guan W, Liu A (2019) Theoretical investigation of methanol oxidation on Pt and PtNi catalysts. Ionics. https://doi.org/10.1007/s11581-019-03280-2

  55. 55.

    Chen M, He Y, Spendelow JS, Wu G (2019) Atomically dispersed metal catalysts for oxygen reduction. ACS Energy Lett 4:1619–1633

    CAS  Google Scholar 

  56. 56.

    Liu A, Yang Q, Ren X, Meng F, Gao L, Gao M, Yang Y, Ma T, Wu G (2019) Energy- and cost-efficient NaCl-assisted synthesis of MAX-phase Ti3AlC2 at lower temperature. Ceram Int. https://doi.org/10.1016/j.ceramint.2019.11.008

  57. 57.

    Kattel S, Atanassov P, Kiefer B (2014) A density functional theory study of oxygen reduction reaction on non-PGM Fe-Nx-C electrocatalysts. Phys Chem Chem Phys 16:13800–13806

    CAS  PubMed  Google Scholar 

  58. 58.

    Lyalin A, Nakayama A, Uosaki K, Taketsugu T (2013) Theoretical predictions for hexagonal BN based nanomaterials as electrocatalysts for the oxygen reduction reaction. Phys Chem Chem Phys 15:2809–2820

    CAS  PubMed  Google Scholar 

  59. 59.

    Duan Z, Wang G (2011) A first principles study of oxygen reduction reaction on a Pt(111) surface modified by a subsurface transition metal M (M = Ni, Co, or Fe). Phys Chem Chem Phys 13:20178–20187

    CAS  PubMed  Google Scholar 

  60. 60.

    Liu A, Ren X, Wang B, Zhang J, Yang P, Zhang J, An M (2014) Complexing agent study via computational chemistry for environmentally friendly silver electrodeposition and the application of silver deposit. RSC Adv 4:40930–40940

    CAS  Google Scholar 

  61. 61.

    Liu A, Ren X, An M, Zhang J, Yang P, Wang B, Zhu Y, Wang C (2014) A combined theoretical and experimental study for silver electroplating. Sci Rep 4:3837

    PubMed  PubMed Central  Google Scholar 

  62. 62.

    Li J, Zhang H, Samarakoon W, Shan W, Cullen DA, Karakalos S, Chen M, Gu D, More KL, Wang G, Feng Z, Wang Z, Wu G (2019) Thermally driven structure and performance evolution of atomically dispersed FeN4 sites for oxygen reduction. Angew Chem 131:19147–19156

    Google Scholar 

Download references

Funding

Supports of the National Natural Science Foundation of China (21902021, 21908017, 51972293, 51772039, and 21703027), the Joint Research Fund Liaoning-Shenyang National Laboratory for Materials Science (20180510020), the Fundamental Research Funds for the Central Universities (DUT18LK15 and DUT18LK21), the Grant-in-Aid for Scientific Research (KAKENHI) program, Japan (B, Grant Number 19H02818), and Supercomputing Center of Dalian University of Technology for this work are gratefully acknowledged.

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Anmin Liu or Xuefeng Ren or Tingli Ma.

Ethics declarations

Competing interests

The authors declare that they have no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 4742 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Liu, A., Li, C., Ren, X. et al. Co loaded on graphene with interfacial structure as high performance catalyst for 4e ORR: a DFT study. Ionics 26, 3483–3490 (2020). https://doi.org/10.1007/s11581-020-03471-2

Download citation

Keywords

  • ORR
  • Co/C catalyst
  • DFT
  • Pathway