Electrocatalysis of Pd–Er bimetallic catalysts for methanol oxidation in alkaline media

Abstract

The Pd–Er/C catalysts with different Pd/Er ratios were synthesized through a simple simultaneous reduction reaction with sodium borohydride in aqueous solution. The structural and morphological features were characterized by X-ray diffraction (XRD) and transmission electron microscopy (TEM), respectively. The electrocatalytic performance of those catalysts for methanol oxidation in alkaline media was tested using cyclic voltammetry (CV) and linear sweep voltammetry (LSV). It is found that the Pd-4Er/C catalyst has a higher catalytic activity than the Pd/C catalyst. CO stripping experiments show its good resistance to CO poisoning, which can be explained by a bifunctional mechanism. According to the results from the X-ray photoelectron spectroscopy (XPS), the higher content of metallic Pd caused by the doping of metal Er also accounts for the improvement of catalytic performance. This work provides a highly efficient catalyst for methanol electrooxidation in alkaline media.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. 1.

    Awasthi R, Singh RN (2013) Graphene-supported Pd–Ru nanoparticles with superior methanol electrooxidation activity. Carbon 51:282–289

    CAS  Article  Google Scholar 

  2. 2.

    Scibioh MA, Kim SK, Cho EA, Lim TH, Hong SA, Ha HY (2008) Pt-CeO2/C anode catalyst for direct methanol fuel cells. Appl Catal B 84:773–782

    CAS  Article  Google Scholar 

  3. 3.

    Li W, Wang X, Chen Z, Waje M, Yan Y (2006) Pt-Ru supported on double-walled carbon nanotubes as high-performance anode catalysts for direct methanol fuel cells. J Phys Chem B 110:15353–15358

    CAS  Article  Google Scholar 

  4. 4.

    Kim JH, Fang B, Yoon SB, Yu JS (2009) Hollow core/mesoporous shell carbon capsule as an unique cathode catalyst support in direct methanol fuel cell. Appl Catal B 88:368–375

    CAS  Article  Google Scholar 

  5. 5.

    Hsu NY, Chien CC, Jeng KT (2008) Characterization and enhancement of carbon nanotube-supported PtRu electrocatalyst for direct methanol fuel cell applications. Appl Catal B 84:196–203

    CAS  Article  Google Scholar 

  6. 6.

    Reddington E, Sapienza A, Gurau B, Viswanathan R, Sarangapani S, Smotkin ES, Mallouk TE (1998) Combinatorial electrochemistry: a highly parallel, optical screening method for discovery of better electrocatalysts. Science 280:1735–1737

    CAS  Article  Google Scholar 

  7. 7.

    Jarvi TD, Sriramulu S, Stuve EM (1997) Potential dependence of the yield of carbon dioxide from electrocatalytic oxidation of methanol on platinum (100). J Phys Chem B 101:3649–3652

    CAS  Article  Google Scholar 

  8. 8.

    Heinzel A, Barragan VM (1999) A review of the state-of-the-art of the methanol crossover in direct methanol fuel cells. J Power Sources 84:70–74

    CAS  Article  Google Scholar 

  9. 9.

    Liu ZL, Zhang X, Hong L (2009) Physical and electrochemical characterizations of nanostructured Pd/C and PdNi/C catalysts for methanol oxidation. Electrochem Commun 11:925–928

    CAS  Article  Google Scholar 

  10. 10.

    Hu YJ, Wu P, Yin YJ, Zhang H, Cai CX (2012) Effects of structure, composition, and carbon support properties on the electrocatalytic activity of Pt-Ni-graphene nanocatalysts for the methanol oxidation. Appl Catal B 111:208–217

    Article  Google Scholar 

  11. 11.

    Jiang YY, Lu YZ, Li FG, Wu TS, Niu L, Chen W (2012) Facile electrochemical codeposition of “clean” graphene–Pd nanocomposite as an anode catalyst for formic acid electrooxidation. Electrochem Commun 19:21–24

    Article  Google Scholar 

  12. 12.

    Wang Y, Wang X, Li CM (2010) Electrocatalysis of Pd–co supported on carbon black or ball-milled carbon nanotubes towards methanol oxidation in alkaline media. Appl Catal B 99:229–234

    CAS  Article  Google Scholar 

  13. 13.

    Sun ZP, Zhang XG, Liu RL, Liang YY, Li HL (2008) A simple approach towards sulfonated multi-walled carbon nanotubes supported by Pd catalysts for methanol electro-oxidation. J Power Sources 185:801–806

    CAS  Article  Google Scholar 

  14. 14.

    Antolini E (2009) Palladium in fuel cell catalysis. Energy Environ Sci 2:915–931

    CAS  Article  Google Scholar 

  15. 15.

    Nguyen ST, Law HM, Nguyen HT, Kristian N, Wang S, Chan SH, Wang X (2009) Enhancement effect of Ag for Pd/C towards the ethanol electro-oxidation in alkaline media. Appl Catal B 91:507–515

    CAS  Article  Google Scholar 

  16. 16.

    Zheng HT, Li Y, Chen S, Shen PK (2006) Effect of support on the activity of Pd electrocatalyst for ethanol oxidation. J Power Sources 163:371–375

    CAS  Article  Google Scholar 

  17. 17.

    Savadogo O, Lee K, Oishi K, Mitsushima S, Kamiya N, Ota KI (2004) New palladium alloys catalyst for the oxygen reduction reaction in an acid medium. Electrochem Commun 6:105–109

    CAS  Article  Google Scholar 

  18. 18.

    Hosseini H, Mahyari M, Bagheri A, Shaabani A (2014) Pd and PdCo alloy nanoparticles supported on polypropylenimine dendrimer-grafted graphene: a highly efficient anodic catalyst for direct formic acid fuel cells. J Power Sources 247:70–77

    CAS  Article  Google Scholar 

  19. 19.

    Liao MG, Hu Q, Zheng JB, Li Y, Zhou H, Zhong CJ, Chen BH (2013) Pd decorated Fe/C nanocatalyst for formic acid electrooxidation. Electrochim Acta 111:504–509

    CAS  Article  Google Scholar 

  20. 20.

    Li RS, Wei Z, Huang T, Yu AS (2011) Ultrasonic-assisted synthesis of Pd–Ni alloy catalysts supported on multi-walled carbon nanotubes for formic acid electrooxidation. Electrochim Acta 56:6860–6865

    CAS  Article  Google Scholar 

  21. 21.

    Matin MA, Jang JH, Kwon YU (2014) PdM nanoparticles (M= Ni, co, Fe, Mn) with high activity and stability in formic acid oxidation synthesized by sonochemical reactions. J Power Sources 262:356–363

    CAS  Article  Google Scholar 

  22. 22.

    Dai L, Zou SZ (2011) Enhanced formic acid oxidation on cu–Pd nanoparticles. J Power Sources 196:9369–9372

    CAS  Article  Google Scholar 

  23. 23.

    Wen WJ, Li CY, Li W, Tian Y (2013) Carbon-supported Pd–Cr electrocatalysts for the electrooxidation of formic acid that demonstrate high activity and stability. Electrochim Acta 109:201–206

    CAS  Article  Google Scholar 

  24. 24.

    Feng YY, Zhang GR, Xu BQ (2013) Catalytic Pd-on-au nanostructures with improved Pd activity for formic acid electro-oxidation. RSC Adv 3:1748–1752

    CAS  Article  Google Scholar 

  25. 25.

    Leger JM, Rousseau S, Coutanceau C, Hahn F, Lamy C (2005) How bimetallic electrocatalysts does work for reactions involved in fuel cells? Example of ethanol oxidation and comparison to methanol. Electrochim Acta 50:5118–5125

    CAS  Article  Google Scholar 

  26. 26.

    Gurau B, Viswanathan R, Liu R, Lafrenz TJ, Ley KL, Smotkin ES, Sarangapani S (1998) Structural and electrochemical characterization of binary, ternary, and quaternary platinum alloy catalysts for methanol electro-oxidation. J Phys Chem B 102:9997–10003

    CAS  Article  Google Scholar 

  27. 27.

    Wang Y, Zhao HR, Tang Q, Zhang H, Li CM, Qi T (2016) Electrocatalysis of titanium suboxide-supported Pt–Tb towards formic acid electrooxidation. Int J Hydrog Energy 41:1568–1573

    CAS  Article  Google Scholar 

  28. 28.

    Antolini E, Perez J (2011) The use of rare earth-based materials in low-temperature fuel cells. Int J Hydrog Energy 36:15752–15765

    CAS  Article  Google Scholar 

  29. 29.

    Rodrigues RMS, Tusi MM, Chikasawa MH, Forbicini CALGO, Linardi M, Spinace EV, Neto AO (2011) Preparation and characterization of PtRu/C-rare earth using an alcohol-reduction process for ethanol electro-oxidation. Ionics 17:189–193

    CAS  Article  Google Scholar 

  30. 30.

    Ma SH, Du X, Jia ZJ, Wang Y, Qi T (2018) Novel palladium-gadolinium (Pd-Gd/C) bimetallic catalysts for electrooxidation of methanol in alkaline media. Ionics 24:2421–2426

    CAS  Article  Google Scholar 

  31. 31.

    Yang YS, Wang L, Li A, Jia ZJ, Wang Y, Qi T (2015) Novel palladium–yttrium (Pd–Y/C) catalysts for methanol electrooxidation in alkaline media. J Solid State Electrochem 19:923–927

    CAS  Article  Google Scholar 

  32. 32.

    Jia ZJ, Wang Y, Qi T (2015) Pd nanoparticles supported on mg–Al–CO3 layered double hydroxide as an effective catalyst for methanol electro-oxidation. RSC Adv 5:62142–62148

    CAS  Article  Google Scholar 

  33. 33.

    Cohen JL, Volpe DJ, Abruna HD (2007) Electrochemical determination of activation energies for methanol oxidation on polycrystalline platinum in acidic and alkaline electrolytes. Phys Chem Chem Phys 9:49–77

    CAS  Article  Google Scholar 

  34. 34.

    Qu WL, Wang ZB, Jiang ZZ, Gu DM, Yin GP (2012) Investigation on performance of Pd/Al2O3–C catalyst synthesized by microwave assisted polyol process for electrooxidation of formic acid. RSC Adv 2:344–350

    CAS  Article  Google Scholar 

  35. 35.

    Cui ZM, Li CM, Jiang SP (2011) PtRu catalysts supported on heteropolyacid and chitosan functionalized carbon nanotubes for methanol oxidation reaction of fuel cells. Phys Chem Chem Phys 13:16349–16357

    CAS  Article  Google Scholar 

Download references

Funding

The authors are grateful for the financial support by Beijing Municipal Natural Science Foundation (Grant No. 2184127), Key Research Program of Frontier Sciences of Chinese Academy of Sciences (Grant No. QYZDJ-SSW-JSC021), as well as by “Strategic Priority Research Program” of Chinese Academy of Sciences (Grant No. XDA21070302).

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Yi Wang or Tao Qi.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Hua, D., Zhang, L.Y., Meng, K. et al. Electrocatalysis of Pd–Er bimetallic catalysts for methanol oxidation in alkaline media. Ionics 26, 3459–3464 (2020). https://doi.org/10.1007/s11581-020-03461-4

Download citation

Keywords

  • Palladium
  • Erbium
  • Electrocatalysis
  • Methanol oxidation