Graphitic carbon nitride nanosheets made by different methods as electrode material for supercapacitors

Abstract

In this work, we have synthetized graphitic carbon nitride (g-C3N4) nanosheets by chemical oxidation method and thermal oxidation method. The properties of the prepared g-C3N4 nanosheets were analyzed using X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), and transmission electron microscopy (TEM), and their electrochemical performance were further investigated using cyclic voltammetry (CV), electrochemical impedance spectrometry (EIS), and chronopotentiometry (GCD). The g-C3N4, the g-C3N4 after oxidation, and the g-C3N4 after thermal oxidation show different electrochemical properties. More importantly, the specific capacitance of g-C3N4 nanosheets after thermal oxidation of 580 °C (170.1 F g−1) is higher than g-C3N4 (127.7 F g−1) and g-C3N4 after 12 M sulfuric acid (133.6 F g−1) at a current density of 0.5 A g−1. And an excellent cyclic stability was obtained with a capacity retention of approximately 95.9% after 1000 cycles in a 2 M KOH solutions. Further, g-C3N4 nanosheets after thermal oxidation of 580 °C show good energy density of 3.740 wh/kg and power density of 99.46 w/kg characteristics superior application potential for high performance energy storage devices.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. 1.

    Chen P, Yang JJ, Li SS, Wang Z, Xiao TY, Qian YH, Yu SH (2013) Hydrothermal synthesis of macroscopic nitrogen-doped graphene hydrogels for ultrafast supercapacitor. Nano 2:249–256

    CAS  Google Scholar 

  2. 2.

    Chen N, Ma K, Bai Z, Mi H, Li Z, Zhang Q, Qiu J (2017) Controlled fabrication of interconnected porous carbon nanosheets for supercapacitors with a long cycle life. ChemElectroChem 4(12):3196–3203

    CAS  Article  Google Scholar 

  3. 3.

    Jiang H, Li C, Sun T, Ma J (2012) A green and high energy density asymmetric supercapacitor based on ultrathin MnO2 nanostructures and functional mesoporous carbon nanotube electrodes. Nanoscale 4(3):807–812

    CAS  Article  Google Scholar 

  4. 4.

    Qiao Y, Sun Q, Xi J, Cui H, Tang Y, Wang X (2016) A modified solvothermal synthesis of porous Mn 3 O 4 for supercapacitor with excellent rate capability and long cycle life. J Alloys Compd 660:416–422

    CAS  Article  Google Scholar 

  5. 5.

    Zhao N, Fan HQ, Zhang MC, Wang C, Ren XH, Peng HJ, Li H, Jiang XB, Cao XQ (2019) Preparation of partially-cladding NiCo-LDH/Mn304 composite by electrodeposition route and its excellent supercapacitor performance. J Alloys Compd 796:111–119

    CAS  Article  Google Scholar 

  6. 6.

    Zhao N, Fan HQ, Ma JW, Zhang MC, Wang C, Li H, Jiang XB, Cao XQ (2019) Entire synergistic contribution of electrodeposited battery-type NiCo204@Ni4.5Co4.5S8composite for high-performance supercapacitors. J Power Sources 439:227097

    CAS  Article  Google Scholar 

  7. 7.

    Sato T, Masuda G, Takagi K (2004) Electrochemical properties of novel ionic liquids for electric double layer capacitor applications. Electrochim Acta 49(21):3603–3611

    CAS  Article  Google Scholar 

  8. 8.

    Choi PR, Lee E, Kwon SH, Jung JC, Kim M-S (2015) Characterization and organic electric-double-layer-capacitor application of KOH activated coal-tar-pitch-based carbons: effect of carbonization temperature. J Phys Chem Solids 87:72–79

    CAS  Article  Google Scholar 

  9. 9.

    Yoon S, Jang JH, Ka BH, Oh SM (2005) Complex capacitance analysis on rate capability of electric-double layer capacitor (EDLC) electrodes of different thickness. Electrochim Acta 50(11):2255–2262

    CAS  Article  Google Scholar 

  10. 10.

    Sun X, Wang G, Hwang JY, Lian J (2011) Porous nickel oxide nano-sheets for high performance pseudocapacitance materials. J Mater Chem 21(41)

  11. 11.

    Noh KA, Kim DW, Jin CS, Shin KH, Kim JH, Ko JM (2003) Synthesis and pseudo-capacitance of chemically-prepared polypyrrole powder. J Power Sources 124(2):593–595

    CAS  Article  Google Scholar 

  12. 12.

    Lü J, Zhang Y, Lü Z, Huang X, Wang Z, Zhu X, Wei B (2015) A preliminary study of the pseudo-capacitance features of strontium doped lanthanum manganite. RSC Adv 5(8):5858–5862

    Article  Google Scholar 

  13. 13.

    Dong GZ, Fan HQ, Fu K, Ma LT, Zhang SJ, Zhang MC, Ma JW, Wang WJ (2018) The evaluation of super-capacitive performance of novel g-C3N4/PPy nanocomposite electrode material with sandwich-like structure. Compos Part B 162:369–377

    Article  Google Scholar 

  14. 14.

    Ma LT, Fan HQ, Fu K, Zhao YW (2016) Metal-organic framework/layered carbon nitride nano-sandwiches for superior asymmetric supercapacitor. Chem Sel 1:3730–3738

    CAS  Google Scholar 

  15. 15.

    Portet C, Taberna PL, Simon P, Flahaut E (2005) Influence of carbon nanotubes addition on carbon–carbon supercapacitor performances in organic electrolyte. J Power Sources 139(1–2):371–378

    CAS  Article  Google Scholar 

  16. 16.

    Vix-Guterl C, Saadallah S, Jurewicz K, Frackowiak E, Reda M, Parmentier J, Patarin J, Beguin F (2004) Supercapacitor electrodes from new ordered porous carbon materials obtained by a templating procedure. Mater Sci Eng B 108(1–2):148–155

    Article  Google Scholar 

  17. 17.

    Cheng Y, Shen PK, Jiang SP (2014) NiO nanoparticles supported on polyethylenimine functionalized CNTs as efficient electrocatalysts for supercapacitor and oxygen evolution reaction. Int J Hydrog Energy 39(35):20662–20670

    CAS  Article  Google Scholar 

  18. 18.

    Shi Y, Pan L, Liu B, Wang Y, Cui Y, Bao Z, Yu G (2014) Nanostructured conductive polypyrrole hydrogels as high-performance, flexible supercapacitor electrodes. J Mater Chem A 2(17):6086–6091

    CAS  Article  Google Scholar 

  19. 19.

    Snook GA, Kao P, Best AS (2011) Conducting-polymer-based supercapacitor devices and electrodes. J Power Sources 196(1):1–12

    CAS  Article  Google Scholar 

  20. 20.

    Soudan P, Lucas P, Ho HA, Jobin D, Breau L, Bélanger D (2001) Synthesis, chemical polymerization and electrochemical properties of low band gap conducting polymers for use in supercapacitors. J Mater Chem 11(3):773–782

    CAS  Article  Google Scholar 

  21. 21.

    Lee M-T, Chang J-K, Hsieh Y-T, Tsai W-T (2008) Annealed Mn–Fe binary oxides for supercapacitor applications. J Power Sources 185(2):1550–1556

    CAS  Article  Google Scholar 

  22. 22.

    Gujar TP, Shinde VR, Lokhande CD, Kim WY, Jung KD, Joo OS (2007) Spray deposited amorphous RuO2 for an effective use in electrochemical supercapacitor. Electrochem Commun 9(3):504–510

    CAS  Article  Google Scholar 

  23. 23.

    Yan J, Fan Z, Wei T, Qian W, Zhang M, Wei F (2010) Fast and reversible surface redox reaction of graphene–MnO2 composites as supercapacitor electrodes. Carbon 48(13):3825–3833

    CAS  Article  Google Scholar 

  24. 24.

    Li Z, Mi Y, Liu X, Liu S, Yang S, Wang J (2011) Flexible graphene/MnO2 composite papers for supercapacitor electrodes. J Mater Chem 21(38)

  25. 25.

    Cheng S, Meng X, Shang N, Gao S, Feng C, Wang C, Wang Z (2018) Pd supported on g-C3N4 nanosheets: Mott–Schottky heterojunction catalyst for transfer hydrogenation of nitroarenes using formic acid as hydrogen source. New J Chem 42(3):1771–1778

    CAS  Article  Google Scholar 

  26. 26.

    Portet C, Taberna PL, Simon P, Flahaut E, Laberty-Robert C (2005) High power density electrodes for carbon supercapacitor applications. Electrochim Acta 50:4174–4181

    CAS  Article  Google Scholar 

  27. 27.

    Du CS, Pan N (2006) High power density supercapacitor electrodes of carbon nanotube films by electrophoretic deposition 17:5314-5318

Download references

Acknowledgments

We are grateful for the help of Analytical and Testing Center of Southwest University of Science and Technology.

Funding

This work was supported by Independent Research Project of State Kay Laboratory of Environmentally Friendly Energy Materials (grant no.19fksy0112).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Huiwei Liao.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zhang, X., Liao, H., Liu, X. et al. Graphitic carbon nitride nanosheets made by different methods as electrode material for supercapacitors. Ionics 26, 3599–3607 (2020). https://doi.org/10.1007/s11581-020-03458-z

Download citation

Keywords

  • Graphitic carbon nitride nanosheets
  • Chemical oxidation
  • Thermal oxidation
  • Electrode material
  • Supercapacitor