A waste utilization strategy for preparing high-performance supercapacitor electrodes with sea urchin-like structure


Three-dimensional (3D) porous nanomaterials are promising candidate for supercapacitor electrodes owing to their rich specific surface area and rapid electron transport rates. Herein, we report a simple mixed solvent-thermal process and one-step carbonization for the controllable synthesis of 3D hierarchically porous nanomaterials with a diverse porous microstructure consisting of nickel cobaltate, graphene, and polyurethane foam (PGNC). Significantly, PGNC exhibits a sea urchin 3D porous structure, which originates from the synergetic effect of hierarchical, interconnected pore structure with a distinctive unit structure composed of polyols and isocyanates, abundant amount of doped N atoms and surface opened channels with proper degree of graphitization, displays extraordinary electrochemical performances such as an ultrahigh reversible specific capacity of ca.1900 F·g−1 at a current density of 1.0 A·g−1 and excellent cycling stability (ca. 83% capacitance retention after 5000 charge/discharge cycles). Moreover, an asymmetric supercapacitor based on PGNC as positive electrode and the mixture of activated carbon with graphite as negative electrode manifested a high energy density of ca.52 Wh·kg−1 at a power density of 375 W·kg−1 in 6 M KOH aqueous electrolyte. Even at a higher power density of 3750 W·kg−1, the energy density can still reach 26 Wh·kg−1.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 6
Fig. 7
Fig. 8
Fig. 9


  1. 1.

    Chu S, Majumdar A (2012) Opportunities and challenges for a sustainable energy future. Nature 488:294–303. https://doi.org/10.1038/nature11475

    CAS  Article  Google Scholar 

  2. 2.

    Cai D, Xiao S, Wang D, Liu B, Wang L, Liu Y, Li H, Wang Y, Li Q, Wang T (2014) Morphology controlled synthesis of NiCo2O4 nanosheet array nanostructures on nickel foam and their application for pseudocapacitors. Electrochim Acta 142:118–124. https://doi.org/10.1016/j.electacta.2014.06.119

    CAS  Article  Google Scholar 

  3. 3.

    Lukatskaya MR, Kota S, Lin Z, Zhao M-Q, Shpigel N, Levi MD, Halim J, Taberna P-L, Barsoum MW, Simon P, Gogotsi Y (2017) Ultra-high-rate pseudocapacitive energy storage in two-dimensional transition metal carbides. Nat Energy 2. https://doi.org/10.1038/nenergy.2017.105

  4. 4.

    Li Y, Wang G, Wei T, Fan Z, Yan P (2016) Nitrogen and sulfur co-doped porous carbon nanosheets derived from willow catkin for supercapacitors. Nano Energy 19:165–175. https://doi.org/10.1016/j.nanoen.2015.10.038

    CAS  Article  Google Scholar 

  5. 5.

    Borenstein A, Hanna O, Attias R, Luski S, Brousse T, Aurbach D (2017) Carbon-based composite materials for supercapacitor electrodes: a review. J Mater Chem A 5:12653–12672. https://doi.org/10.1039/c7ta00863e

    CAS  Article  Google Scholar 

  6. 6.

    Armand M, Tarascon JM (2008) Building better batteries. Nature 451:652–657. https://doi.org/10.1038/451652a

    CAS  Article  Google Scholar 

  7. 7.

    Li C, He D, Huang Z-H, Wang M-X (2018) Hierarchical micro−/mesoporous carbon derived from rice husk by hydrothermal pre-treatment for high performance supercapacitor. J Electrochem Soc 165:A3334–A3341. https://doi.org/10.1149/2.0121814jes

    CAS  Article  Google Scholar 

  8. 8.

    Mitravinda T, Nanaji K, Anandan S, Jyothirmayi A, Chakravadhanula VSK, Sharma CS, Rao TN (2018) Facile synthesis of corn silk derived nanoporous carbon for an improved supercapacitor performance. J Electrochem Soc 165:A3369–A3379. https://doi.org/10.1149/2.0621814jes

    CAS  Article  Google Scholar 

  9. 9.

    Gund GS, Dubal DP, Shinde SS, Lokhande CD (2014) Architectured morphologies of chemically prepared NiO/MWCNTs nanohybrid thin films for high performance supercapacitors. ACS Appl Mater Interfaces 6:3176–3188. https://doi.org/10.1021/am404422g

    CAS  Article  PubMed  Google Scholar 

  10. 10.

    Sun J, Lei E, Ma C, Wu Z, Xu Z, Liu Y, Li W, Liu S (2019) Fabrication of three-dimensional microtubular kapok fiber carbon aerogel/RuO2 composites for supercapacitors. Electrochim Acta 300:225–234. https://doi.org/10.1016/j.electacta.2019.01.095

    CAS  Article  Google Scholar 

  11. 11.

    Zhang Y, Wang B, Liu F, Cheng J, X-w Z, Zhang L (2016) Full synergistic contribution of electrodeposited three-dimensional NiCo2O4@MnO2 nanosheet networks electrode for asymmetric supercapacitors. Nano Energy 27:627–637. https://doi.org/10.1016/j.nanoen.2016.08.013

    CAS  Article  Google Scholar 

  12. 12.

    Jiang M, Abushrenta N, Wu X, Li Y, Sun X (2017) Investigation for the synthesis of hierarchical Co3O4@MnO2 nanoarrays materials and their application for supercapacitor. J Mater Sci Mater Electron 28:1281–1287. https://doi.org/10.1007/s10854-016-5656-1

    CAS  Article  Google Scholar 

  13. 13.

    Nithya VD, Arul NS (2016) Progress and development of Fe3O4 electrodes for supercapacitors. J Mater Chem A 4:10767–10778. https://doi.org/10.1039/c6ta02582j

    CAS  Article  Google Scholar 

  14. 14.

    Abouali S, Garakani MA, Xu Z-L, Kim J-K (2016) NiCo2O4/CNT nanocomposites as bi-functional electrodes for Li ion batteries and supercapacitors. Carbon 102:262–272. https://doi.org/10.1016/j.carbon.2016.02.055

    CAS  Article  Google Scholar 

  15. 15.

    Hu L, Dai C, Liu H, Li Y, Shen B, Chen Y, Bao S-J, Xu M (2018) Double-shelled NiO-NiCo2O4 heterostructure@carbon hollow nanocages as an efficient sulfur host for advanced lithium-sulfur batteries. Adv Energy Mater 8. https://doi.org/10.1002/aenm.201800709

  16. 16.

    Lee DU, Kim BJ, Chen Z (2013) One-pot synthesis of a mesoporous NiCo2O4 nanoplatelet and graphene hybrid and its oxygen reduction and evolution activities as an efficient bi-functional electrocatalyst. J Mater Chem A 1:4754–4762. https://doi.org/10.1039/c3ta01402a

    CAS  Article  Google Scholar 

  17. 17.

    Wei W, Ye W, Wang J, Huang C, Xiong JB, Qiao H, Cui S, Chen W, Mi L, Yan P (2019) Hydrangea-like alpha-Ni1/3Co2/3(OH)2 reinforced by ethyl carbamate “rivet” for all-solid-state supercapacitors with outstanding comprehensive performance. ACS Appl Mater Interfaces 11:32269–32281. https://doi.org/10.1021/acsami.9b09555

    CAS  Article  PubMed  Google Scholar 

  18. 18.

    Wei W, Wu J, Cui S, Zhao Y, Chen W, Mi L (2019) Alpha-Ni (OH)2/NiS1.97 heterojunction composites with excellent ion and electron transport properties for advanced supercapacitors. Nanoscale 11:6243–6253. https://doi.org/10.1039/c9nr00962k

    CAS  Article  PubMed  Google Scholar 

  19. 19.

    Wei W, Chen W, Ding L, Cui S, Mi L (2017) Construction of hierarchical three-dimensional interspersed flower-like nickel hydroxide for asymmetric supercapacitors. Nano Res 10:3726–3742. https://doi.org/10.1007/s12274-017-1586-3

    CAS  Article  Google Scholar 

  20. 20.

    Xue Y, Chen T, Song S, Kim P, Bae J (2019) DNA-directed fabrication of NiCo2O4 nanoparticles on carbon nanotubes as electrodes for high-performance battery-like electrochemical capacitive energy storage device. Nano Energy 56:751–758. https://doi.org/10.1016/j.nanoen.2018.11.003

    CAS  Article  Google Scholar 

  21. 21.

    Li X, Liu Y, Jin Z, Li P, Chen X, Xiao D (2019) Enhanced electrochemical performance of C-NiO/NiCO2O4//AC asymmetric supercapacitor based on material design and device exploration. Electrochim Acta 296:335–344. https://doi.org/10.1016/j.electacta.2018.11.011

    CAS  Article  Google Scholar 

  22. 22.

    Jia H, Wang Z, Zheng X, Lin J, Liang H, Cai Y, Qi J, Cao J, Feng J, Fei W (2018) Interlaced Ni-Co LDH nanosheets wrapped Co9S8 nanotube with hierarchical structure toward high performance supercapacitors. Chem Eng J 351:348–355. https://doi.org/10.1016/j.cej.2018.06.113

    CAS  Article  Google Scholar 

  23. 23.

    Lang X, Zhang H, Xue X, Li C, Sun X, Liu Z, Nan H, Hu X, Tian H (2018) Rational design of La0.85Sr0.15MnO3@NiCo2O4 core-shell architecture supported on Ni foam for high performance supercapacitors. J Power Sources 402:213–220. https://doi.org/10.1016/j.jpowsour.2018.09.040

    CAS  Article  Google Scholar 

  24. 24.

    Jia H, Li Q, Li C, Song Y, Zheng H, Zhao J, Zhang W, Liu X, Liu Z, Liu Y (2018) A novel three-dimensional hierarchical NiCo2O4/Ni2P electrode for high energy asymmetric supercapacitor. Chem Eng J 354:254–260. https://doi.org/10.1016/j.cej.2018.08.008

    CAS  Article  Google Scholar 

  25. 25.

    Wang Y, Zhang M, Li Y, Ma T, Liu H, Pan D, Wang X, Wang A (2018) Rational design 3D nitrogen doped graphene supported spatial crosslinked Co3O4@NiCo2O4 on nickel foam for binder-free supercapacitor electrodes. Electrochim Acta 290:12–20. https://doi.org/10.1016/j.electacta.2018.09.060

    CAS  Article  Google Scholar 

  26. 26.

    Zhang L, Xu D, Chen XY, Zhang ZJ (2016) Large capacitive enhancement of N-doped nanoporous carbon by the addition of novel redox additive of diphenylcarbazide. Electrochim Acta 188:13–22. https://doi.org/10.1016/j.electacta.2015.10.165

    CAS  Article  Google Scholar 

  27. 27.

    Wan L, Wei W, Xie M, Zhang Y, Li X, Xiao R, Chen J, Du C (2019) Nitrogen, sulfur co-doped hierarchically porous carbon from rape pollen as high-performance supercapacitor electrode. Electrochim Acta 311:72–82. https://doi.org/10.1016/j.electacta.2019.04.106

    CAS  Article  Google Scholar 

  28. 28.

    Huang A, Yan J, Zhang H, Li X, Zhang H (2017) Effect of the pore length and orientation upon the electrochemical capacitive performance of ordered mesoporous carbons. J Energy Chem 26:121–128. https://doi.org/10.1016/j.jechem.2016.08.005

    Article  Google Scholar 

  29. 29.

    Tran C, Singhal R, Lawrence D, Kalra V (2015) Polyaniline-coated freestanding porous carbon nanofibers as efficient hybrid electrodes for supercapacitors. J Power Sources 293:373–379. https://doi.org/10.1016/j.jpowsour.2015.05.054

    CAS  Article  Google Scholar 

  30. 30.

    Lin Z, Waller GH, Liu Y, Liu M, C-p W (2013) 3D nitrogen-doped graphene prepared by pyrolysis of graphene oxide with polypyrrole for electrocatalysis of oxygen reduction reaction. Nano Energy 2:241–248. https://doi.org/10.1016/j.nanoen.2012.09.002

    CAS  Article  Google Scholar 

  31. 31.

    Jabeen N, Hussain A, Xia Q, Sun S, Zhu J, Xia H (2017) High-performance 2.6 V aqueous asymmetric supercapacitors based on in situ formed Na0.5MnO2 nanosheet assembled nanowall arrays. Adv Mater 29. https://doi.org/10.1002/adma.201700804

  32. 32.

    Jiang YT, Yan J, Wu XL, Shan DD, Zhou QH, Jiang LL, Yang DR, Fan ZJ (2016) Facile synthesis of carbon nanofibers-bridged porous carbon nanosheets for high-performance supercapacitors. J Power Sources 307:190–198. https://doi.org/10.1016/j.jpowsour.2015.12.081

    CAS  Article  Google Scholar 

  33. 33.

    Sheng J, Ma C, Ma Y, Zhang HX, Wang RR, Xie ZY, Shi JL (2016) Synthesis of microporous carbon nanofibers with high specific surface using tetraethyl orthosilicate template for supercapacitors. Int J Hydrogen Energy 41:9383–9393. https://doi.org/10.1016/j.ijhydene.2016.04.076

    CAS  Article  Google Scholar 

  34. 34.

    Yao MM, Hu ZH, Xu ZJ, Liu YF, Liu PP, Zhang Q (2015) High-performance electrode materials of hierarchical mesoporous nickel oxide ultrathin nanosheets derived from self-assembled scroll-like alpha-nickel hydroxide. J Power Sources 273:914–922. https://doi.org/10.1016/j.jpowsour.2014.09.175

    CAS  Article  Google Scholar 

  35. 35.

    Mirzaee M, Dehghanian C (2019) Flower-like mesoporous nano NiCo2O4-decorated ERGO/Ni-NiO foam as electrode materials for supercapacitor. Mater Res Bull 109:10–20. https://doi.org/10.1016/j.materresbull.2018.09.020

    CAS  Article  Google Scholar 

  36. 36.

    Zhou K, Hu M, He Y-b, Yang L, Han C, Lv R, Kang F, Li B (2018) Transition metal assisted synthesis of tunable pore structure carbon with high performance as sodium/lithium ion battery anode. Carbon 129:667–673. https://doi.org/10.1016/j.carbon.2017.12.054

    CAS  Article  Google Scholar 

  37. 37.

    Thambiliyagodage CJ, Ulrich S, Araujo PT, Bakker MG (2018) Catalytic graphitization in nanocast carbon monoliths by iron, cobalt and nickel nanoparticles. Carbon 134:452–463. https://doi.org/10.1016/j.carbon.2018.04.002

    CAS  Article  Google Scholar 

  38. 38.

    Yadav AA, Hunge YM, Liu S, Kulkarni SB (2019) Ultrasound assisted growth of NiCo2O4@carbon cloth for high energy storage device application. Ultrason Sonochem 56:290–296. https://doi.org/10.1016/j.ultsonch.2019.04.007

    CAS  Article  PubMed  Google Scholar 

  39. 39.

    Chen C, Yan D, Luo X, Gao W, Huang G, Han Z, Zeng Y, Zhu Z (2018) Construction of core-shell NiMoO4@Ni-Co-S nanorods as advanced electrodes for high-performance asymmetric supercapacitors. ACS Appl Mater Interfaces 10:4662–4671. https://doi.org/10.1021/acsami.7b16271

    CAS  Article  PubMed  Google Scholar 

  40. 40.

    Wu Z, Zhu Y, Ji X (2014) NiCo2O4-based materials for electrochemical supercapacitors. J Mater Chem A 2:14759–14772. https://doi.org/10.1039/c4ta02390k

    CAS  Article  Google Scholar 

  41. 41.

    Yadav AA, Hunge YM, Kulkarni SB (2018) Chemical synthesis of Co3O4 nanowires for symmetric supercapacitor device. J Mater Sci Mater Electron 29:16401–16409. https://doi.org/10.1007/s10854-018-9731-7

    CAS  Article  Google Scholar 

  42. 42.

    Zhou J, Huang Y, Cao X, Ouyang B, Sun W, Tan C, Zhang Y, Ma Q, Liang S, Yan Q, Zhang H (2015) Two-dimensional NiCo2O4 nanosheet-coated three-dimensional graphene networks for high-rate, long-cycle-life supercapacitors. Nanoscale 7:7035–7039. https://doi.org/10.1039/c4nr06527a

    CAS  Article  PubMed  Google Scholar 

  43. 43.

    Tong M, Liu S, Zhang X, Wu T, Zhang H, Wang G, Zhang Y, Zhu X, Zhao H (2017) Two-dimensional CoNi nanoparticles@S,N-doped carbon composites derived from S,N-containing Co/Ni MOFs for high performance supercapacitors. J Mater Chem A 5:9873–9881. https://doi.org/10.1039/c7ta01008g

    CAS  Article  Google Scholar 

  44. 44.

    Jiang LL, Sheng LZ, Long CL, Wei T, Fan ZJ (2015) Functional pillared graphene frameworks for ultrahigh volumetric performance supercapacitors. Adv Energy Mater 5:9. https://doi.org/10.1002/aenm.201500771

    CAS  Article  Google Scholar 

  45. 45.

    Xie Q, Wu S, Zhang Y, Zhao P (2017) Nitrogen-enriched flexible porous carbon/graphene composite cloth as free-standing electrodes for high performance aqueous supercapacitors. J Electroanal Chem 801:57–64. https://doi.org/10.1016/j.jelechem.2017.07.031

    CAS  Article  Google Scholar 

  46. 46.

    Yu WH, Wang HL, Liu S, Mao N, Liu X, Shi J, Liu W, Chen SG, Wang X (2016) N,O-codoped hierarchical porous carbons derived from algae for high-capacity supercapacitors and battery anodes. J Mater Chem A 4:5973–5983. https://doi.org/10.1039/c6ta01821a

    CAS  Article  Google Scholar 

  47. 47.

    Cui C, Xu J, Wang L, Guo D, Mao M, Ma J, Wang T (2016) Growth of NiCo2O4@MnMoO4 nanocolumn arrays with superior pseudocapacitor properties. ACS Appl Mater Interfaces 8:8568–8575. https://doi.org/10.1021/acsami.6b02962

    CAS  Article  PubMed  Google Scholar 

  48. 48.

    Xia C, Jiang Q, Zhao C, Beaujuge PM, Alshareef HN (2016) Asymmetric supercapacitors with metal-like ternary selenides and porous graphene electrodes. Nano Energy 24:78–86. https://doi.org/10.1016/j.nanoen.2016.04.012

    CAS  Article  Google Scholar 

  49. 49.

    Cabo M, Pellicer E, Rossinyol E, Estrader M, Lopez-Ortega A, Nogues J, Castell O, Surinach S, Dolors Baro M (2010) Synthesis of compositionally graded nanocast NiO/NiCo2O4/Co3O4 mesoporous composites with tunable magnetic properties. J Mater Chem 20:7021–7028. https://doi.org/10.1039/c0jm00406e

    CAS  Article  Google Scholar 

  50. 50.

    Lu P, Liu Q, Xiong Y, Wang Q, Lei Y, Lu S, Lu L, Yao L (2015) Nanosheets-assembled hierarchical microstructured Ni (OH)2 hollow spheres for highly sensitive enzyme-free glucose sensors. Electrochim Acta 168:148–156. https://doi.org/10.1016/j.electacta.2015.04.003

    CAS  Article  Google Scholar 

  51. 51.

    Barzegar F, Bello A, Dangbegnon JK, Manyala N, Xia X (2017) Asymmetric supercapacitor based on activated expanded graphite and pinecone tree activated carbon with excellent stability. Appl Energy 207:417–426. https://doi.org/10.1016/j.apenergy.2017.05.110

    CAS  Article  Google Scholar 

Download references


This research was funded by the National Key Research and Development Program of China (grant numbers 2017YFD0500706 and 2017YFD0500603), the National Natural Science Foundation of China (grant numbers 31570929 and 31771000), the Natural Science Foundation of Heilongjiang Province (grant number C2017058), the Innovation Foundation of Harbin (grant number 2017RAXXJ001), the Key Scientific Technological Planning Project of Harbin (grant number 2016AB3BN036), and Heilongjiang University Students Innovation and Entrepreneurship Training Program (grant number 201910212031 and 201910212179).

Author information



Corresponding authors

Correspondence to Zheng Jin or Kai Zhao.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material


(DOCX 2776 kb).

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Meng, Q., Zhang, J., Wang, W. et al. A waste utilization strategy for preparing high-performance supercapacitor electrodes with sea urchin-like structure. Ionics 26, 3565–3577 (2020). https://doi.org/10.1007/s11581-020-03456-1

Download citation


  • 3D porous structure
  • Polyurethane foam
  • Mixed solvent-thermal process
  • Supercapacitor
  • Nickel cobaltate doped