Electrospun PEO nanofibrous membrane enable by LiCl, LiClO4, and LiTFSI salts: a versatile solvent-free electrolyte for lithium-ion battery application


In this study, the effect of type of lithium salts on the main properties of the nanostructure electrolytes was studied. Electrospinning process was applied to production of solvent-free PEO-based nanofibrous electrolytes containing various lithium salts, i.e., LiCl, LiClO4, and LiTFSI. Then, the characteristics of the electrospun nanofibers were evaluated by various techniques. The fraction of free ions was estimated by the FTIR spectrum. Also, to investigate the crystalline phases of the as-spun electrolytes, the samples were subjected to X-ray analysis. The highest room temperature ionic conductivity of the fabricated electrolytes was obtained as 0.33 mS cm−1 by the addition of 1.5 wt% LiClO4 into the nanofibers. Furthermore, the cycling stability of the as-spun structures was enhanced by increasing the amount of LiClO4 and LiCl salts in the produced nanofibers. The results implied that the prepared nanofibers are good candidates as solvent-free electrolytes for Li-ion batteries.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9


  1. 1.

    Lu L, Han X, Li J, Hua J, Ouyang M (2013) A review on the key issues for lithium-ion battery management in electric vehicles. J Power Sources 226:272–288

    CAS  Article  Google Scholar 

  2. 2.

    Nitta N, Wu F, Lee JT, Yushin G (2015) Li-ion battery materials: present and future. Mater Today 18:252–264

    CAS  Article  Google Scholar 

  3. 3.

    Etacheri V, Marom R, Elazari R, Salitra G, Aurbach D (2011) Challenges in the development of advanced Li-ion batteries: a review. Energy Environ Sci 4:3243–3262

    CAS  Article  Google Scholar 

  4. 4.

    Tarascon J-M, Armand M (2011) Issues and challenges facing rechargeable lithium batteries. In: Materials for sustainable energy: a collection of peer-reviewed research and review articles from Nature Publishing Group, World Scientific, pp. 171–179

  5. 5.

    Abraham K, Jiang Z (1996) A polymer electrolyte-based rechargeable lithium/oxygen battery. J Electrochem Soc 143:1–5

    CAS  Article  Google Scholar 

  6. 6.

    Verma P, Maire P, Novák P (2010) A review of the features and analyses of the solid electrolyte interphase in Li-ion batteries. Electrochim Acta 55:6332–6341

    CAS  Article  Google Scholar 

  7. 7.

    Croce F, Appetecchi GB, Persi L, Scrosati B (1998) Nanocomposite polymer electrolytes for lithium batteries. Nature 394:456–458

    CAS  Article  Google Scholar 

  8. 8.

    Murata K, Izuchi S, Yoshihisa Y (2000) An overview of the research and development of solid polymer electrolyte batteries. Electrochim Acta 45:1501–1508

    CAS  Article  Google Scholar 

  9. 9.

    Gadjourova Z, Andreev YG, Tunstall DP, Bruce PG (2001) Ionic conductivity in crystalline polymer electrolytes. Nature 412:520

    CAS  Article  Google Scholar 

  10. 10.

    Ghelichi M, Qazvini NT, Jafari SH, Khonakdar HA, Farajollahi Y, Scheffler C (2013) Conformational, thermal, and ionic conductivity behavior of PEO in PEO/PMMA miscible blend: investigating the effect of lithium salt. J Appl Polym Sci 129:1868–1874

    CAS  Article  Google Scholar 

  11. 11.

    Feng S, Shi D, Liu F, Zheng L, Nie J, Feng W, Huang X, Armand M, Zhou Z (2013) Single lithium-ion conducting polymer electrolytes based on poly [(4-styrenesulfonyl)(trifluoromethanesulfonyl) imide] anions. Electrochim Acta 93:254–263

    CAS  Article  Google Scholar 

  12. 12.

    Fullerton-Shirey SK, Maranas JK (2009) Effect of LiClO4 on the structure and mobility of PEO-based solid polymer electrolytes. Macromolecules 42:2142–2156

    CAS  Article  Google Scholar 

  13. 13.

    Yang R, Zhang SC, Zhang L, Bi XF (2013) In: Materials Science Forum, Trans Tech Publ, pp. 53–58

  14. 14.

    Marzantowicz M, Krok F, Dygas J, Florjańczyk Z, Zygadło-Monikowska E (2008) The influence of phase segregation on properties of semicrystalline PEO: LiTFSI electrolytes. Solid State Ionics 179:1670–1678

    CAS  Article  Google Scholar 

  15. 15.

    Wang S, Min K (2010) Solid polymer electrolytes of blends of polyurethane and polyether modified polysiloxane and their ionic conductivity. Polymer 51:2621–2628

    CAS  Article  Google Scholar 

  16. 16.

    Ning W, Xingxiang Z, Haihui L, Jianping W (2009) N, N-dimethylacetamide/lithium chloride plasticized starch as solid biopolymer electrolytes. Carbohydr Polym 77:607–611

    Article  Google Scholar 

  17. 17.

    Baskaran R, Selvasekarapandian S, Kuwata N, Kawamura J, Hattori T (2007) Structure, thermal and transport properties of PVAc–LiClO4 solid polymer electrolytes. J Phys Chem Solids 68:407–412

    CAS  Article  Google Scholar 

  18. 18.

    Huh P-H, Choi M-G, Jo NJ, Lee J-K, Lee J-O, Yang W (2004) Effect of salt concentration on the glass transition temperature and ionic conductivity of poly(ethylene glycol)-polyurethane/LiClO4 complexes. Macromol Res 12:422–426

    CAS  Article  Google Scholar 

  19. 19.

    Khan MS, Shakoor A (2015) Ionic conductance, thermal and morphological behavior of PEO-graphene oxide-salts composites, J Chem, 2015

  20. 20.

    Watanabe M, Nishimoto A (1995) Effects of network structures and incorporated salt species on electrochemical properties of polyether-based polymer electrolytes. Solid State Ionics 79:306–312

    CAS  Article  Google Scholar 

  21. 21.

    Stolwijk NA, Wiencierz M, Heddier C, Kösters J (2012) What can we learn from ionic conductivity measurements in polymer electrolytes? A case study on poly (ethylene oxide)(PEO)–NaI and PEO–LiTFSI. J Phys Chem B 116:3065–3074

    CAS  Article  Google Scholar 

  22. 22.

    Banitaba SN, Semnani D, Heydari-Soureshjani E, Rezaei B, Ensafi AA (2019) Effect of titanium dioxide and zinc oxide fillers on morphology, electrochemical and mechanical properties of the PEO-based nanofibers, applicable as an electrolyte for lithium-ion batteries, Materials Research Express

  23. 23.

    Banitaba SN, Semnani D, Rezaei B, Ensafi AA (2019) Morphology and electrochemical and mechanical properties of polyethylene-oxide-based nanofibrous electrolytes applicable in lithium ion batteries. Polym Int 68:746–754

    CAS  Article  Google Scholar 

  24. 24.

    Freitag KM, Kirchhain H, Wüllen LV, Nilges T (2017)) Enhancement of Li ion conductivity by electrospun polymer fibers and direct fabrication of solvent-free separator membranes for Li ion batteries. Inorg Chem 56:2100–2107

    CAS  Article  Google Scholar 

  25. 25.

    Walke P, Freitag KM, Kirchhain H, Kaiser M, van Wüllen L, Nilges T (2018) Electrospun Li (TFSI)@ polyethylene oxide membranes as solid electrolytes. Z Anorg Allg Chem 644:1863–1874

    CAS  Article  Google Scholar 

  26. 26.

    Banitaba SN, Semnani D, Rezaei B, Ensafi AA (2019) Evaluating the electrochemical properties of PEO-based nanofibrous electrolytes incorporated with TiO2 nanofiller applicable in lithium-ion batteries. Polym Adv Technol

  27. 27.

    Haider A, Haider S, Kang I-K (2018) A comprehensive review summarizing the effect of electrospinning parameters and potential applications of nanofibers in biomedical and biotechnology. Arab J Chem 11:1165–1188

    CAS  Article  Google Scholar 

  28. 28.

    Yalcinkaya F, Yalcinkaya B, Jirsak O (2015) Influence of salts on electrospinning of aqueous and nonaqueous polymer solutions. J Nanomater 2015:1

    Article  Google Scholar 

  29. 29.

    S. Wang (2007) in, University of Akron

  30. 30.

    Qian X, Gu N, Cheng Z, Yang X, Wang E, Dong S (2002) Plasticizer effect on the ionic conductivity of PEO-based polymer electrolyte. Mater Chem Phys 74:98–103

    CAS  Article  Google Scholar 

  31. 31.

    Heikkilä P, Harlin A (2009) Electrospinning of polyacrylonitrile (PAN) solution: effect of conductive additive and filler on the process. Express Polym Lett 3:437–445

    Article  Google Scholar 

  32. 32.

    Zhao Y, Tao R, Fujinami T (2006) Enhancement of ionic conductivity of PEO-LiTFSI electrolyte upon incorporation of plasticizing lithium borate. Electrochim Acta 51:6451–6455

    CAS  Article  Google Scholar 

  33. 33.

    Vorrey S, Teeters D (2003) Study of the ion conduction of polymer electrolytes confined in micro and nanopores. Electrochim Acta 48:2137–2141

    CAS  Article  Google Scholar 

  34. 34.

    Arya A, Sharma A (2018) Structural, microstructural and electrochemical properties of dispersed-type polymer nanocomposite films. J Phys D Appl Phys 51:045504

    Article  Google Scholar 

  35. 35.

    Song M-K, Cho J-Y, Cho BW, Rhee H-W (2002) Characterization of UV-cured gel polymer electrolytes for rechargeable lithium batteries. J Power Sources 110:209–215

    CAS  Article  Google Scholar 

  36. 36.

    Liu W (2016) Multilayer composite solid electrolytes for lithium ion batteries

  37. 37.

    Banitaba SN, Semnani D, Heydari-Soureshjani E, Rezaei B, Ensafi AA (2019) Electrospun polyethylene oxide-based membranes incorporated with silicon dioxide, aluminum oxide and clay nanoparticles as flexible solvent-free electrolytes for lithium-ion batteries. JOM 71:4537–4546

    CAS  Article  Google Scholar 

  38. 38.

    Banitaba SN, Semnani D, Heydari-Soureshjani E, Rezaei B, Ensafi AA (2019) Nanofibrous poly (ethylene oxide)-based structures incorporated with multi-walled carbon nanotube and graphene oxide as all-solid-state electrolytes for lithium ion batteries. Polym Int 68:1787–1794

    CAS  Article  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Dariush Semnani.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Banitaba, S.N., Semnani, D., Fakhrali, A. et al. Electrospun PEO nanofibrous membrane enable by LiCl, LiClO4, and LiTFSI salts: a versatile solvent-free electrolyte for lithium-ion battery application. Ionics 26, 3249–3260 (2020). https://doi.org/10.1007/s11581-019-03414-6

Download citation


  • Nanofibrous electrolyte
  • Lithium salts
  • SPEs
  • Ionic conductivity
  • Li-ion battery