Skip to main content
Log in

Facile synthesis of MoS2@TiNb2O7 nanocomposite anode materials with superior electrochemical performance for Li-ion batteries

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

Novel hierarchical MoS2@TiNb2O7 (MS@TNO) hetero-nanostructures consisted of TiNb2O7 nanorods and ultrathin MoS2 nanosheets were successfully synthesized by simple sol-gel/hydrothermal processes. The synergistic effects of the two constituents benefited to the lithium-ion transport kinetics of the MS@TNO hetero-nanostructure for lithium-ion batteries (LIBs). In the potential range of 0.01~3.00 V vs. Li/Li+, the MS@TNO-based LIBs exhibited high capacities of 925 and 771 mAh g−1 after 50 and 200 cycles at a current density of 0.5 A g−1, respectively, and excellent rate performance of 579 mAh g−1 at 4 A g−1. The obtained anode materials exhibited excellent electrochemical performance with superior reversible capacity, rate capability, and cyclic stability. The outstanding electrochemical property of 3D MS@TNO hetero-nanostructures allows their application in high-performance anode materials for next-generation LIBs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Lin D, Liu Y, Cui Y (2017) Reviving the lithium metal anode for high-energy batteries. Nat Nanotechnol 12:194–206

    Article  CAS  PubMed  Google Scholar 

  2. Li H, Shen L, Zhang X, Wang J, Nie P, Che Q, Ding B (2013) Nitrogen-doped carbon coated Li4Ti5O12 nanocomposite: superior anode materials for rechargeable lithium ion batteries. J Power Sources 221:122–127

    Article  CAS  Google Scholar 

  3. Crowther O, West AC (2008) Effect of electrolyte composition on lithium dendrite growth. J Electrochem Soc 155:A806–A811

    Article  CAS  Google Scholar 

  4. Guo B, Yu K, Fu H, Hua Q, Qi R, Li H, Song H, Guo S, Zhu Z (2015) Firework-shaped TiO2 microspheres embedded with few-layer MoS2 as an anode material for excellent performance lithium-ion batteries. J Mater Chem A 3:6392–6401

    Article  CAS  Google Scholar 

  5. Wang J, Zhou Y, Shao Z (2013) Porous TiO2 (B)/anatase microspheres with hierarchical nano and microstructures for high-performance lithium-ion batteries. Electrochim Acta 97:386–392

    Article  CAS  Google Scholar 

  6. Cai Y, Wang HE, Huang SZ, Jin J, Wang C, Yu Y, Su BL (2015) Hierarchical nanotube-constructed porous TiO2-B spheres for high performance lithium ion batteries. Sci Rep 5:11557

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Zhuang J, Wang Z, Zhang J, Lu G, Kang X, Cheng Z (2018) Ternary-phase Li4Ti5O12/TiO2 nanosheet composite for high rate lithium-ion batteries. Energy Technol 6:1771–1776

    Article  CAS  Google Scholar 

  8. Zhang D, Pan A, Zhong X, Song H, Zhang Y, Tang Y, Wang J (2018) MoS2 nanosheets uniformly coated TiO2 nanowire arrays with enhanced electrochemical performances for lithium-ion batteries. J Alloys Compd 758:91–98

    Article  CAS  Google Scholar 

  9. Pei J, Geng H, Ang EH, Zhang L, Cao X, Zheng J, Gu H (2018) Controlled synthesis of hollow C@TiO2@MoS2 hierarchical nanospheres for high-performance lithium-ion batteries. Nanoscale 10:17327–17334

    Article  CAS  PubMed  Google Scholar 

  10. Zhuang W, Li L, Zhu J, An R, Lu L, Lu X, Wu X, Ying H (2015) Facile synthesis of mesoporous MoS2-TiO2 nanofibers for ultrastable lithium ion battery anodes. ChemElectroChem 2:374–381

    Article  CAS  Google Scholar 

  11. Zhu G, Li Q, Zhao Y, Che R (2017) Nanoporous TiNb2O7/C composite microspheres with three-dimensional conductive network for long-cycle-life and high-rate-capability anode materials for Lithium-ion batteries. ACS Appl Mater Interfaces 9:41258–41264

    Article  CAS  PubMed  Google Scholar 

  12. Lu X, Jian Z, Fang Z, Gu L, Hu YS, Chen W, Chen L (2011) Atomic-scale investigation on lithium storage mechanism in TiNb2O7. Energy Environ Sci 4:2638–2644

    Article  CAS  Google Scholar 

  13. Pham-Cong D, Choi JH, Yun J, Bandarenka AS, Kim J, Braun PV, Cho CR (2017) Synergistically enhanced electrochemical performance of hierarchical MoS2/TiNb2O7 hetero-nanostructures as anode materials for Li-ion batteries. ACS Nano 11:1026–1033

    Article  CAS  PubMed  Google Scholar 

  14. Park H, Shin DH, Song T, Park WI, Paik U (2017) Synthesis of hierarchical porous TiNb2O7 nanotubes with controllable porosity and their application in high power Li-ion batteries. J Mater Chem A 5:6958–6965

    Article  CAS  Google Scholar 

  15. Chen M, Dai Y, Wang J, Wang Q, Wang Y, Cheng X, Yan X (2017) Smart combination of three-dimensional-flower-like MoS2 nanospheres/interconnected carbon nanotubes for application in supercapacitor with enhanced electrochemical performance. J Alloy Compd 696:900–906

    Article  CAS  Google Scholar 

  16. Yu H, Lan H, Yan L, Qian S, Cheng X, Zhu H, Shu J (2017) TiNb2O7 hollow nanofiber anode with superior electrochemical performance in rechargeable lithium ion batteries. Nano Energy 38:109–117

    Article  CAS  Google Scholar 

  17. Xu W, Wang T, Wu S, Wang S (2017) N-doped carbon-coated MoS2 nanosheets on hollow carbon microspheres for high-performance lithium-ion batteries. J Alloy Compd 698:68–76

    Article  CAS  Google Scholar 

  18. Kumuthini R, Ramachandran R, Therese HA, Wang F (2017) Electrochemical properties of electrospun MoS2@C nanofiber as electrode material for high-performance supercapacitor application. J Alloy Compd 705:624–630

    Article  CAS  Google Scholar 

  19. Zhang X, Ding P, Sun Y, Wang Y, Wu Y, Guo J (2017) Shell-core MoS2 nanosheets@Fe3O4 sphere heterostructure with exposed active edges for efficient electrocatalytic hydrogen production. J Alloy Compd 715:53–59

    Article  CAS  Google Scholar 

  20. Yu XY, Hu H, Wang Y, Chen H, Lou XW (2015) Ultrathin MoS2 nanosheets supported on N-doped carbon nanoboxes with enhanced lithium storage and electrocatalytic properties. Angew Chem Int Ed 54:7395–7398

    Article  CAS  Google Scholar 

  21. Wang Y, Jin Y, Li S, Han J, Ju Z, Jia M (2018) Flower-like MoS2 supported on three-dimensional graphene aerogels as high-performance anode materials for sodium-ion batteries. Ionics 24:3431–3437

  22. Wang S, Guan BY, Yu L, Lou XW (2017) Rational design of three-layered TiO2@carbon@MoS2 hierarchical nanotubes for enhanced lithium storage. Adv Mater 29:1702724

    Article  CAS  Google Scholar 

  23. Zhang G, Liu H, Qu J, Li J (2016) Two-dimensional layered MoS2:rational design, properties and electrochemical applications. Energy Environ Sci 9:1190–1209

    Article  CAS  Google Scholar 

  24. Su L, Jing Y, Zhou Z (2011) Li ion battery materials with core–shell nanostructures. Nanoscale 3:3967–3983

    Article  CAS  PubMed  Google Scholar 

  25. Geng Q, Tong X, Wenya GE, Yang C, Wang J, Maloletnev AS, Wang Z, Su X (2018) Humate-assisted synthesis of MoS2/C nanocomposites via Co-precipitation/calcination route for high performance lithium ion batteries. Nanoscale Res Lett 13:1–9

    Article  CAS  Google Scholar 

  26. Wang Q, Li J (2007) Facilitated lithium storage in MoS2 overlayers supported on coaxial carbon nanotubes. J Phys Chem C 111:1675–1682

    Article  CAS  Google Scholar 

  27. Das SK, Mallavajula R, Jayaprakash N, Archer LA (2012) Self-assembled MoS2–carbon nanostructures: influence of nanostructuring and carbon on lithium battery performance. J Mater Chem 22:12988–12992

    Article  CAS  Google Scholar 

  28. Chen M, Wang J, Yan X, Ren J, Dai Y, Wang Q, Cheng X (2017) Flower-like molybdenum disulfide nanosheets grown on carbon nanosheets to form nanocomposites: novel structure and excellent electrochemical performance. J Alloy Compd 722:250–258

    Article  CAS  Google Scholar 

  29. Han JT, Huang YH, Goodenough JB (2011) New anode framework for rechargeable lithium batteries. Chem Mater 23:2027–2029

    Article  CAS  Google Scholar 

  30. Huang F, Yan A, Sui Y, Wei F, Qi J, Meng Q, He Y (2017) One-step hydrothermal synthesis of Ni3S4@MoS2 nanosheet on carbon fiber paper as a binder-free anode for supercapacitor. J Mater Sci Electron 28:12747–12754

    Article  CAS  Google Scholar 

  31. Li X, Li W, Li M, Cui P, Chen D, Gengenbach T, Chu L, Liu H, Song G (2015) Glucose-assisted synthesis of the hierarchical TiO2 nanowire@MoS2 nanosheet nanocomposite and its synergistic lithium storage performance. J Mater Chem A 3:2762–2769

    Article  CAS  Google Scholar 

  32. Al-Mamun M, Zhang H, Liu P, Wang Y, Cao J, Zhao H (2014) Directly hydrothermal growth of ultrathin MoS2 nanostructured films as high performance counter electrodes for dye-sensitised solar cells. RSC Adv 4:21277–21283

    Article  CAS  Google Scholar 

  33. Xiao J, Wang X, Yang XQ, Xun S, Liu G, Koech PK, Lemmon JP (2011) Electrochemically induced high capacity displacement reaction of PEO/MoS2/graphene nanocomposites with lithium. Adv Funct Mater 21:2840–2846

    Article  CAS  Google Scholar 

  34. Shu H, Li F, Hu C, Liang P, Cao D, Chen X (2016) The capacity fading mechanism and improvement of cycling stability in MoS2-based anode materials for lithium-ion batteries. Nanoscale 8:2918–2926

    Article  CAS  PubMed  Google Scholar 

  35. Wang L, Xu Z, Wang W, Bai X (2014) Atomic mechanism of dynamic electrochemical lithiation processes of MoS2 nanosheets. J Am Chem Soc 136:6693–6697

    Article  CAS  PubMed  Google Scholar 

  36. Feng C, Ma J, Li H, Zeng R, Guo Z, Liu H (2009) Synthesis of molybdenum disulfide (MoS2) for lithium ion battery applications. Mater Res Bull 44:811–1815

    Google Scholar 

  37. Hu L, Lin C, Wang C, Yang C, Li J, Chen Y, Lin S (2016) TiNb2O7 nanorods as a novel anode material for secondary lithium-ion batteries. Funct Mater Lett 9:1642004

    Article  CAS  Google Scholar 

  38. Guo X, Yin P, Wang Z, Yang H (2018) Template-assisted sol–gel synthesis of porous MoS2/C nanocomposites as anode materials for lithium-ion batteries. J Sol-Gel Sci Technol 85:140–148

    Article  CAS  Google Scholar 

  39. Zhang L, Lou XW (2014) Hierarchical MoS2 shells supported on carbon spheres for highly reversible lithium storage. Chem Eur J 20:5219–5223

    Article  CAS  PubMed  Google Scholar 

  40. Wei M, Wei K, Ichihara M, Zhou H (2008) Nb2O5 nanobelts: a lithium intercalation host with large capacity and high rate capability. Electrochem Commun 10:980–983

    Article  CAS  Google Scholar 

  41. Du J, Wu H, Wang X, Qi C, Mao W, Ren T, Yang Z (2018) Ternary MoS2/MoO3/C nanosheets as high-performance anode materials for lithium-ion batteries. J Electron Mater 47:6767–6773

    Article  CAS  Google Scholar 

  42. Wu M, Xia S, Ding J, Zhao B, Jiao Y, Du A, Zhang H (2018) Growth of MoS2 nanoflowers with expanded interlayer distance onto N-doped graphene for reversible lithium storage. ChemElectroChem 5:2263–2270

    Article  CAS  Google Scholar 

  43. Yu XY, Yu L, Lou XW (2017) Hollow nanostructures of molybdenum sulfides for electrochemical energy storage and conversion. Small Methods 1:1600020

    Article  CAS  Google Scholar 

  44. Yang L, Wang S, Mao J, Deng J, Gao Q, Tang Y, Schmidt OG (2013) Hierarchical MoS2/polyaniline nanowires with excellent electrochemical performance for lithium-ion batteries. Adv Mater 25:1180–1184

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

The authors acknowledge financial support from the NSF of China (Grant Nos. 11772286 and 11627801).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yueqiu Gong.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gong, Y., Chen, H., Gong, L. et al. Facile synthesis of MoS2@TiNb2O7 nanocomposite anode materials with superior electrochemical performance for Li-ion batteries. Ionics 25, 4119–4128 (2019). https://doi.org/10.1007/s11581-019-02974-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-019-02974-x

Keywords

Navigation