Skip to main content

Advertisement

Log in

Simulation of electrochemical-thermal behavior for a 26650 lithium iron phosphate/graphite cell

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

A P2D electrochemical model coupled with a 2D thermal model is built and validated for a commercial type 2.3 Ah ANR26650 cell including the cathode, anode, separator, and current collectors. The spatial and temporal distribution of Li+ concentration on the electrode surface, the flux of Li+ out of the porous active particles or the local current density, the reversible/irreversible reaction heat generation rate, and the temperature distribution inside the battery are analyzed at various discharge rates. The critical thickness of the cathode is systematically studied with the correlated particle size and porosity. It is indicated that the critical thickness of the cathode increases with the particle size and porosity. In order to achieve the optimum electrochemical performance, the critical thickness of the ANR26650 battery can be estimated as 55 μm in the original model. The results indicate that the ionic ohmic heat dominates the ohmic heat generation in porous electrodes. The higher the C-rate is, the more significant role the irreversible heat plays in the generation heat. A battery thermal management system (BTMS) with water cooling plate can lower the module temperature effectively even when it is discharged at a very high C-rate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Abbreviations

A cell [m2]:

surface area of electrode (both sides)

ai [m−1]:

specific area of the electrode particle

C [J kg−1 K−1]:

specific heat capacity

c s [mol m−3]:

concentration of lithium ions in solid

c l [mol m−3]:

concentration of lithium ions in electrolyte

C p [Ah]:

capacity of battery

D l [m2 s−1]:

diffusion coefficient of salt in electrolyte

D s [m2 s−1]:

diffusion coefficient of lithium ions in solid electrode particles

E a,D [J mol−1]:

diffusion active energy

E a,k [J mol−1]:

reaction active energy

F:

Faraday’s constant

h [W m−2 K−1]:

heat transfer coefficient

iapp [A m−2]:

applied current density

J Li [mol m−2 s−1]:

pore wall flux of lithium-ions out of the porous electrode

k 0 [m2.5 mol-0.5 s−1]:

electrochemical reaction rate constant

kT [W m−1 K−1]:

thermal conductivity

L [m]:

thickness of battery component

Q [W m−3]:

heat generation rate

R :

gas constant

R s [m]:

electrode partical radius

T [K]:

temperature

Tinit [K]:

initial temperature of battery

\( {t}_{+}^0 \) :

transference number of lithium-ions

U [V]:

open circuit voltage

v :

the thermodynamic factor relating to electrolyte activity

ɑ a :

anodic transfer coefficient

ɑ c :

cathodic transfer coefficient

ϕ s :

[V] potential in the solid phase

ϕ l :

[V] potential in the electrolyte

ε s :

volume fraction of active materials

ε l :

volume fraction of electrolyte

σ i [S m−1]:

electronic conductivity of solid matrix

κ l [S m−1]:

ionic conductivity of electrolyte

ρ [kg m−3]:

effective density

neg:

anode

pos:

cathode

sep:

separator

ncc:

current collector of anode

pcc:

current collector of cathode

batt:

whole battery

l:

electrolyte

s:

solid

ini:

initial value

max:

maximum value

surf:

variables on the surface of electrode particles

amb:

ambient

ref.:

reference value

rev:

reversible

pol:

polarized

ohm:

ohmic

irr:

irreversible

References

  1. Scrosati B, Garche J (2010) Lithium batteries: status, prospects and future. J Power Sources 195(9):2419–2430. https://doi.org/10.1016/j.jpowsour.2009.11.048

    Article  CAS  Google Scholar 

  2. Huang XK, Ke SY, Lv HC, Liu Y (2018) A dynamic capacity fading model with thermal evolution considering variable electrode thickness for lithium-ion batteries. Ionics 24(11):3439–3450. https://doi.org/10.1007/s11581-018-2476-8

    Article  CAS  Google Scholar 

  3. Feng X, Fang M, He X, Ouyang M, Lu L, Wang H, Zhang M (2014) Thermal runaway features of large format prismatic lithium ion battery using extended volume accelerating rate calorimetry. J Power Sources 255:294–301. https://doi.org/10.1016/j.jpowsour.2014.01.005

    Article  CAS  Google Scholar 

  4. Abada S, Marlair G, Lecocq A, Petit M, Sauvant-Moynot V, Huet F (2016) Safety focused modeling of lithium-ion batteries: a review. J Power Sources 306:178–192. https://doi.org/10.1016/j.jpowsour.2015.11.100

    Article  CAS  Google Scholar 

  5. Azizi Y, Sadrameli SM (2016) Thermal management of a LiFePO4 battery pack at high temperature environment using a composite of phase change materials and aluminum wire mesh plates. Energy Conv Manag 128:294–302. https://doi.org/10.1016/j.enconman.2016.09.081

    Article  CAS  Google Scholar 

  6. Drake SJ, Martin M, Wetz DA, Ostanek JK, Miller SP, Heinzel JM, Jain A (2015) Heat generation rate measurement in a Li-ion cell at large C-rates through temperature and heat flux measurements. J Power Sources 285:266–273. https://doi.org/10.1016/j.jpowsour.2015.03.008

    Article  CAS  Google Scholar 

  7. Inui Y, Kobayashi Y, Watanabe Y et al (2006) Simulation of temperature distribution in cylindrical and prismatic lithium ion secondary batteries. Energy Conv Manag 48(7):2103–2109. https://doi.org/10.1016/j.enconman.2006.12.012

    Article  CAS  Google Scholar 

  8. Yang F, Qiao Y, Gao B, Duan P, Zhu Y (2016) Investigation on Li-ion battery charging polarization characteristics and influence factors. Ionics 22:1603–1610. https://doi.org/10.1007/s11581-016-1694-1

    Article  CAS  Google Scholar 

  9. Guo M, Sikha G, White RE (2011) Single-particle model for a lithium-ion cell: thermal behavior. J Electrochem Soc 158(2):A122. https://doi.org/10.1149/1.3561774

    Article  CAS  Google Scholar 

  10. Santhanagopalan S, Guo M, Ramadass P et al (2006) Review of models for predicting the cycling performance of lithium ion batteries. J Power Sources 156(2):620–628. https://doi.org/10.1016/j.jpowsour.2005.05.070

    Article  CAS  Google Scholar 

  11. Romero-Becerril A, Alvarez-Icaza L (2011) Comparison of discretization methods applied to the single-particle model of lithium-ion batteries. J Power Sources 196(23):10267–10279. https://doi.org/10.1016/j.jpowsour.2011.06.091

    Article  CAS  Google Scholar 

  12. Doyle M, Fuller TF, Newman J (1993) Modeling of galvanostatic charge and discharge of the lithium polymer insertion cell. J Electrochem Soc 140(6):1526–1533. https://doi.org/10.1149/1.2221597

    Article  CAS  Google Scholar 

  13. Xu M, Zhang Z, Wang X, Jia L, Yang L (2014) Two-dimensional electrochemical–thermal coupled modeling of cylindrical LiFePO4 batteries. J Power Sources 256:233–243. https://doi.org/10.1016/j.jpowsour.2014.01.070

    Article  CAS  Google Scholar 

  14. Ye Y, Shi Y, Cai N, Lee J, He X (2012) Electro-thermal modeling and experimental validation for lithium ion battery. J Power Sources 199:227–238. https://doi.org/10.1016/j.jpowsour.2011.10.027

    Article  CAS  Google Scholar 

  15. Wu W, Xiao XR, Huang XS (2012) The effect of battery design parameters on heat generation and utilization in a Li-ion cell. Electrochim Acta 83:227–240. https://doi.org/10.1016/j.electacta.2012.07.081

    Article  CAS  Google Scholar 

  16. Lu WQ, Jansen A, Dees D, Nelson P, Veselka NR, Henriksen G (2011) High-energy electrode investigation for plug-in hybrid electric vehicles. J Power Sources 196:1537–1540. https://doi.org/10.1016/j.jpowsour.2010.08.117

    Article  CAS  Google Scholar 

  17. Zhao R, Liu J, Gu JJ (2014) The effects of electrode thickness on the electrochemical and thermal characteristic of lithium ion battery. Appl Energ 139:220–229. https://doi.org/10.1016/j.apenergy.2014.11.051

    Article  CAS  Google Scholar 

  18. Wang M, Li J, He X, Wu H, Wan C (2012) The effect of local current density on electrode design for lithium-ion batteries. J Power Sources 207:127–133. https://doi.org/10.1016/j.jpowsour.2011.12.063

    Article  CAS  Google Scholar 

  19. Capron O, Samba A, Omar N, Coosemans T, Bossche P, van Mierlo J (2015) Lithium-ion batteries: thermal behavior investigation of unbalanced modules. Sustainability 7:8374–8398. https://doi.org/10.3390/su7078374

    Article  CAS  Google Scholar 

  20. Zhao J, Rao Z, Li Y (2015) Thermal performance of mini-channel liquid cooled cylinder based battery thermal management for cylindrical lithium-ion power battery. Energy Conv Manag 103:157–165. https://doi.org/10.1016/j.enconman.2015.06.056

    Article  CAS  Google Scholar 

  21. Huo Y, Rao Z, Liu X et al (2014) Investigation of power battery thermal management by using mini-channel cold plate. Energy Conv Manag 89:387–395. https://doi.org/10.1016/j.enconman.2014.10.015

    Article  Google Scholar 

  22. Chen D, Jiang J, Gi-Heon K et al (2016) Comparison of different cooling methods for lithium ion battery cells. Appl Therm Eng 94:846–854. https://doi.org/10.1016/j.applthermaleng.2015.10.015

    Article  CAS  Google Scholar 

  23. Hausmann A, Depcik C (2013) Expanding the Peukert equation for battery capacity modeling through inclusion of a temperature dependency. J Power Sources 235:148–158. https://doi.org/10.1016/j.jpowsour.2013.01.174

    Article  CAS  Google Scholar 

  24. Lou T, Zhang W, Guo H et al (2012) The internal resistance characteristics of lithium-ion battery based on HPPC method. Adv Mater Res 455-456:246–251. https://doi.org/10.4028/www.scientific.net/amr.455-456.246

    Article  CAS  Google Scholar 

  25. Xu X, Liu H, Yang Q et al (2010) Study on impedance measurement about lithium ion batteries. China Meas Test 36(6):3

    Google Scholar 

  26. Jiang F, Peng P, Sun Y et al (2013) Thermal analyses of LiFePO4/graphite battery discharge processes. J Power Sources 243:181–194. https://doi.org/10.1016/j.jpowsour.2013.05.089

    Article  CAS  Google Scholar 

  27. Yang H, Bang HJ, Prakash J et al (2004) Evaluation of electrochemical Interface area and Lithium diffusion coefficient for a composite graphite anode. J Electrochem Soc 151(8):A1247. https://doi.org/10.1149/1.1763139

    Article  CAS  Google Scholar 

  28. Wu M, Liu K, Wang Y et al (2002) Heat dissipation design for lithium-ion batteries. J Power Sources 109(1):160–166. https://doi.org/10.1016/s0378-7753(02)00048-4

    Article  CAS  Google Scholar 

  29. Rao Z, Wang S (2011) A review of power battery thermal energy management. Renew Sust Energ Rev 15(9):4554–4571. https://doi.org/10.1016/j.rser.2011.07.096

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (Grant nos. 21573109, 21206069) and the Priority Academic Program Development of Jiangsu Higher Education Institutions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiuhong Yu.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Xinwei Bei and Qiaoyun Liu are the first author

Electronic supplementary material

ESM 1

(PDF 274 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bei, X., Liu, Q., Cong, J. et al. Simulation of electrochemical-thermal behavior for a 26650 lithium iron phosphate/graphite cell. Ionics 25, 3715–3726 (2019). https://doi.org/10.1007/s11581-019-02906-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-019-02906-9

Keywords

Navigation