Skip to main content
Log in

Preparation of new composite polymer electrolyte for long cycling all-solid-state lithium battery

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

A new composite solid polymer electrolyte (SPE) PPC-PEO 10 W [5:5]-1%wt LAGP with high conductivity is successfully prepared. The relationships between the conductivities and compositions are systematically characterized. The optimal composite polymer electrolyte presents a maximum conductivity of 8.39 × 10−4 S cm−1 with a 4.5 V electrochemical window and excellent stability with lithium at 60 °C. The relevant mechanisms of the conductivity improvement are studied. Finally, the all-solid-state lithium battery (ASSLB) LiFePO4/Li cells are assembled and the initial discharge specific capacities of the cells are 152.9, 135.1, 114.9, and 99.1 mAh g−1 at 0.1, 0.2, 0.5, and 1 C at 60 °C, respectively. The LFP/Li cells show good discharge retentions of 88.2% (~ 103.1 mAh g−1) after 700 cycles at 0.5 C and 73.4% after 500 cycles at 1 C. This work presents a promising composite polymer electrolyte for ASSLBs, which is a highly attractive candidate for practical application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Fergus JW (2010) Ceramic and polymeric solid electrolytes for lithium-ion batteries. J Power Sources 195:4554–4569. https://doi.org/10.1016/j.jpowsour.2010.01.076

    Article  CAS  Google Scholar 

  2. Chen RJ, Qu WJ, Guo X, Li L, Wu F (2016) The pursuit of solid-state electrolytes for lithium batteries: from comprehensive insight to emerging horizons. Mater Horiz 3:487–516. https://doi.org/10.1039/c6mh00218h

    Article  CAS  Google Scholar 

  3. Zheng B, Wang H, Ma J, Gong Z, Yang Y (2017) A review of inorganic solid electrolyte/electrode interface in all-solid-state lithium batteries. Sci Sin Chim 47:579–593. https://doi.org/10.1360/n032016-00239

    Article  Google Scholar 

  4. Hayashi A, Sakuda A, Tatsumisago M (2016) Development of sulfide solid electrolytes and interface formation processes for bulk-type all-solid-state Li and Na batteries. Front Energy Res 4:1–13. https://doi.org/10.3389/fenrg.2016.00025

    Article  CAS  Google Scholar 

  5. Muramatsu H, Hayashi A, Ohtomo T, Hama S, Tatsumisago M (2011) Structural change of Li2S-P2S5 sulfide solid electrolytes in the atmosphere. Solid State Ionics 182:116–119. https://doi.org/10.1016/j.ssi.2010.10.013

    Article  CAS  Google Scholar 

  6. Quartarone E, Mustarelli P (2011) Electrolytes for solid-state lithium rechargeable batteries: recent advances and perspectives. Chem Soc Rev 40:2525–2540. https://doi.org/10.1039/c0cs00081g

    Article  CAS  PubMed  Google Scholar 

  7. Xu D, Wang B, Wang Q, Gu S, Li W, Jin J, Chen C, Wen Z (2018) High-strength internal cross-linking bacterial cellulose-network-based gel polymer electrolyte for dendrite-suppressing and high-rate lithium batteries. ACS Appl Mater Interfaces 10:17809–17819. https://doi.org/10.1021/acsami.8b00034

    Article  CAS  PubMed  Google Scholar 

  8. Chen B, Huang Z, Chen XT, Zhao YR, Xu Q, Long P, Chen SJ, Xu XX (2016) A new composite solid electrolyte PEO/Li10GeP2S12/SN for all-solid-state lithium battery. Electrochim Acta 210:905–914. https://doi.org/10.1016/j.electacta.2016.06.025

    Article  CAS  Google Scholar 

  9. Yang L, Wang Z, Feng Y, Tan R, Zuo Y, Gao R, Zhao Y, Han L, Wang Z, Pan F (2017) Flexible composite solid electrolyte facilitating highly stable “soft contacting” Li-electrolyte interface for solid state lithium-ion batteries. Adv Energy Mater 7:1701437–1701446. https://doi.org/10.1002/aenm.201701437

    Article  CAS  Google Scholar 

  10. Jacob MME, Prabaharan SRS, Radhakrishna S (1997) Effect of PEO addition on the electrolytic and thermal properties of PVDF-LiClO4 polymer electrolytes. Solid State Ionics 104:267–276. https://doi.org/10.1016/s0167-2738(97)00422-0

    Article  CAS  Google Scholar 

  11. Wei Z, Chen S, Wang J, Wang Z, Zhang Z, Yao X, Deng Y, Xu X (2018) A large-size, bipolar-stacked and high-safety solid-state lithium battery with integrated electrolyte and cathode. J Power Sources 394:57–66. https://doi.org/10.1016/j.jpowsour.2018.05.044

    Article  CAS  Google Scholar 

  12. Wei Z, Chen S, Wang J, Wang Z, Zhang Z, Yao X, Deng Y, Xu X (2018) Superior lithium ion conduction of polymer electrolyte with comb-like structure via solvent-free copolymerization for bipolar all-solid-state lithium battery. J Mater Chem A 6:13438–13447. https://doi.org/10.1039/c8ta04477e

    Article  CAS  Google Scholar 

  13. Vignarooban K, Dissanayake MAKL, Albinsson I, Mellander BE (2014) Effect of TiO2 nano-filler and EC plasticizer on electrical and thermal properties of poly(ethylene oxide) (PEO) based solid polymer electrolytes. Solid State Ionics 266:25–28. https://doi.org/10.1016/j.ssi.2014.08.002

    Article  CAS  Google Scholar 

  14. Wetjen M, Navarra MA, Panero S, Passerini S, Scrosati B, Hassoun J (2013) Composite poly(ethylene oxide) electrolytes plasticized by N-alkyl-N-butylpyrrolidinium bis(trifluoromethanesulfonyl)imide for lithium batteries. Chemsuschem 6:1037–1043. https://doi.org/10.1002/cssc.201300105

    Article  CAS  PubMed  Google Scholar 

  15. Masoud EM, El-Bellihi AA, Bayoumy WA, Mousa MA (2013) Organic-inorganic composite polymer electrolyte based on PEO-LiClO4 and nano-Al2O3 filler for lithium polymer batteries: dielectric and transport properties. J Alloys Compd 575:223–228. https://doi.org/10.1016/j.jallcom.2013.04.054

    Article  CAS  Google Scholar 

  16. Zhao YR, Huang Z, Chen SJ, Chen B, Yang J, Zhang Q, Ding F, Chen YH, Xu XX (2016) A promising PEO/LAGP hybrid electrolyte prepared by a simple method for all-solid-state lithium batteries. Solid State Ionics 295:65–71. https://doi.org/10.1016/j.ssi.2016.07.013

    Article  CAS  Google Scholar 

  17. Huang LZ, Wen Z-Y, Jin J, Liu Y (2012) Preparation and characterization of PEO-LATP/LAGP ceramic composite electrolyte membrane for lithium batteries. J Inorg Mater 27:249–252. https://doi.org/10.3724/sp.j.1077.2012.00249

    Article  CAS  Google Scholar 

  18. Li W, Zhang S, Wang B, Gu S, Xu D, Wang J, Chen C, Wen Z (2018) Nanoporous adsorption effect on alteration of the Li+ diffusion pathway by a highly ordered porous electrolyte additive for high-rate all-solid-state lithium metal batteries. ACS Appl Mater Interfaces 10:23874–23882. https://doi.org/10.1021/acsami.8b06574

    Article  CAS  PubMed  Google Scholar 

  19. Zheng J, Tang M, Hu YY (2016) Lithium ion pathway within Li7La3Zr2O12-polyethylene oxide composite electrolytes. Angew Chem Int Ed 55:12538–12542. https://doi.org/10.1002/anie.201607539

    Article  CAS  Google Scholar 

  20. Xu X, Wen Z, Wu X, Yang X, Gu Z (2007) Lithium ion-conducting glass-ceramics of Li1.5Al0.5Ge1.5(PO4)3-xLi2O (x=0.0-0.20) with good electrical and electrochemical properties. J Am Ceram Soc 90:2802–2806. https://doi.org/10.1111/j.1551-2916.2007.01827.x

    Article  CAS  Google Scholar 

  21. Yang J, Huang Z, Huang B, Zhou J, Xu X (2015) Influence of phosphorus sources on lithium ion conducting performance in the system of Li2O–Al2O3–GeO2–P2O5 glass–ceramics. Solid State Ionics 270:61–65. https://doi.org/10.1016/j.ssi.2014.12.013

    Article  CAS  Google Scholar 

  22. Zhou D, Zhou R, Chen C, Yee WA, Kong J, Ding G, Lu X (2013) Non-volatile polymer electrolyte based on poly(propylene carbonate), ionic liquid, and lithium perchlorate for electrochromic devices. J Phys Chem B 117:7783–7789. https://doi.org/10.1021/jp4021678

    Article  CAS  PubMed  Google Scholar 

  23. Yu XY, Xiao M, Wang SJ, Zhao QQ, Meng YZ (2010) Fabrication and characterization of PEO/PPC polymer electrolyte for lithium-ion battery. J Appl Polym Sci 115:2718–2722. https://doi.org/10.1002/app.29915

    Article  CAS  Google Scholar 

  24. Yue H, Li J, Wang Q, Li C, Zhang J, Li Q, Li X, Zhang H, Yang S (2017) Sandwich-like poly(propylene carbonate)-based electrolyte for ambient-temperature solid-state lithium ion batteries. ACS Sustain Chem Eng 6:268–274. https://doi.org/10.1021/acssuschemeng.7b02401

    Article  CAS  Google Scholar 

  25. Chen B, Xu Q, Huang Z, Zhao YR, Chen SJ, Xu XX (2016) One-pot preparation of new copolymer electrolytes with tunable network structure for all-solid-state lithium battery. J Power Sources 331:322–331. https://doi.org/10.1016/j.jpowsour.2016.09.063

    Article  CAS  Google Scholar 

  26. Lee H, Choi S, Choi S, Kim HJ, Choi Y, Yoon S, Cho JJ (2007) SEI layer-forming additives for LiNi0.5Mn1.5O4/graphite 5V Li-ion batteries. Electrochem Commun 9:801–806. https://doi.org/10.1016/j.elecom.2006.11.008

    Article  CAS  Google Scholar 

  27. Chai J, Zhang J, Hu P, Ma J, Du H, Yue L, Zhao J, Wen H, Liu Z, Cui G, Chen L (2016) A high-voltage poly(methylethyl α-cyanoacrylate) composite polymer electrolyte for 5 V lithium batteries. J Mater Chem A 4:5191–5197. https://doi.org/10.1039/c6ta00828c

    Article  CAS  Google Scholar 

  28. Park CH, Kim DW, Prakash J, Sun YK (2003) Electrochemical stability and conductivity enhancement of composite polymer electrolytes. Solid State Ionics 159:111–119. https://doi.org/10.1016/S0167-2738(03)00025-0

    Article  CAS  Google Scholar 

  29. Croce F, Persi L, Scrosati B, Serraino-Fiory F, Plichta E, Hendrickson MA (2001) Role of the ceramic fillers in enhancing the transport properties of composite polymer electrolytes. Electrochim Acta 46:2457–2461. https://doi.org/10.1016/S0013-4686(01)00458-3

    Article  CAS  Google Scholar 

  30. Zhang YJ, Liu XY, Bai WQ, Tang H, Shi SJ, Wang XL, Gu CD, Tu JP (2014) Magnetron sputtering amorphous carbon coatings on metallic lithium: towards promising anodes for lithium secondary batteries. J Power Sources 266:43–50. https://doi.org/10.1016/j.jpowsour.2014.04.147

    Article  CAS  Google Scholar 

  31. Park MS, Ma SB, Lee DJ, Im D, Doo SG, Yamamoto O (2014) A highly reversible lithium metal anode. Sci Rep 4:3815. https://doi.org/10.1038/srep03815

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

The work was supported by funding from the National Key R&D Program of China (Grant No. 2016YFB0100105), the Strategic Priority Program of the Chinese Academy of Sciences (Grant No. XDA09010201), the National Natural Science Foundation of China (Grant No. 51502317), Zhejiang Provincial Natural Science Foundation of China (Grant No. LQ16E020003, LY18E020018, LY18E030011, LD18E020004), and Youth Innovation Promotion Association of the Chinese Academy of Sciences (Grant No. 2017342).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiayin Yao or Shaojie Chen.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(PDF 406 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Z., Gu, H., Wei, Z. et al. Preparation of new composite polymer electrolyte for long cycling all-solid-state lithium battery. Ionics 25, 907–916 (2019). https://doi.org/10.1007/s11581-019-02852-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-019-02852-6

Keywords

Navigation