Skip to main content

Advertisement

Log in

Synthesis and characterization of Ru doped NaNi0.5Mn0.3Ti0.2O2 cathode material with improved electrochemical performance for sodium-ion batteries

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

In this research, a novel layered O3-type NaNi0.48Mn0.3Ti0.2Ru0.02O2 is fabricated by using solid-state method for sodium-ion batteries. Sodium-ion battery (SIB) can be a promising alternative to the current lithium-ion battery (LIB) technology due to the shortage of lithium in nature and higher cost. As a promising cathode material, NaNi0.48Mn0.3Ti0.2Ru0.02O2 electrode shows a high reversible capacity of 155.3 mA h g−1 at 0.05 C (12 mA g−1) in the range of 1.5–4.5 V and exhibits a favorable coulombic efficiency. DFT calculation and X-ray diffraction, Raman, X-ray photoelectron spectroscopy, scanning electron microscopy, and transmission electron microscopy analysis are introduced to reveal the effects of substitution of Ru4+ for Ni2+ including the decreasing electronic localization, more stable material structure, wider sodium-ion diffusion channels and good diffusion coefficient of Na. The doping of Ru has paved a new way to enhance the electrochemical performances of O3-type cathode materials for SIBs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig.5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Wagner FT, Lakshmanan B, Mathias MF (2010) Electrochemistry and the future of the automobile. J Phys Chem Lett 1:2204–2219

    Article  CAS  Google Scholar 

  2. Myung S-T, Maglia F, Park K-J, Yoon CS, Lamp P, Kim S-J, Sun Y-K (2017) Nickel-rich layered cathode materials for automotive lithium-ion batteries: achievements and perspectives. ACS Energy Lett 2:196–223

    Article  CAS  Google Scholar 

  3. Li W, Song B, Manthiram A (2017) High-voltage positive electrode materials for lithium-ion batteries. Chem Soc Rev 46:3006–3059

    Article  CAS  PubMed  Google Scholar 

  4. Ni J, Fu S, Yuan Y, Ma L, Jiang Y, Li L, Lu J (2018) Boosting sodium storage in TiO2 nanotube arrays through surface phosphorylation. Adv Mater 30:1704337–1704344

    Article  CAS  Google Scholar 

  5. Fang C, Huang Y, Zhang W, Han J, Deng Z, Cao Y, Yang H (2016) Routes to high energy cathodes of sodium-ion batteries. Adv Energy Mater 6:1501727–1501745

    Article  CAS  Google Scholar 

  6. Hwang J-Y, Myung S-T, Sun Y-K (2018) Quaternary transition metal oxide layered framework: O3-type Na[Ni0.32Fe0.13Co0.15Mn0.40]O2 cathode material for high-performance sodium-ion batteries. J Phys Chem C 122:13500–13507

    Article  CAS  Google Scholar 

  7. Sun L, Xie Y, Liao X-Z, Wang H, Tan G, Chen Z, Ren Y, Gim J, Tang W, He Y-S, Amine K, Ma Z-F (2018) Insight into ca-substitution effects on O3-type NaNi1/3Fe1/3Mn1/3O2 cathode materials for sodium-ion batteries application. Small 14:1704523–1704530

    Article  CAS  Google Scholar 

  8. Cao M, Wang T, Shadike Z, Nam K, Zhou Y, Fu Z (2018) Reversible multi-Electron transfer of Cr2.8+/Cr4.4+ in O3-type layered Na0.66Fe1/3Cr1/3Ti1/3O2 for sodium-ion batteries. J Electrochem Soc 165:A565–A574

    Article  CAS  Google Scholar 

  9. Sathiya M, Ramesha K, Rousse G, Foix D, Gonbeau D, Prakash AS, Doublet ML, Hemalatha K, Tarascon JM (2013) High performance Li2Ru1–yMnyO3 (0.2 ≤ y ≤ 0.8) cathode materials for rechargeable lithium-ion batteries: their understanding. Chem Mater 25:1121–1131

    Article  CAS  Google Scholar 

  10. Xu Y, Hu E, Yang F, Corbett J, Sun Z, Lyu Y, Yu X, Liu Y, Yang XQ, Li H (2016) Structural integrity – searching the key factor to supress the voltage fade of Li-rich layered cathode materials through 3D X-ray imaging and spectroscopy techniques. Nano Energy 28:164–171

    Article  CAS  Google Scholar 

  11. Mori D, Sakaebe H, Shikano M, Kojitani H, Tatsumi K, Inaguma Y (2011) Synthesis, phase relation and electrical and electrochemical properties of ruthenium-substituted Li2MnO3 as a novel cathode material. J Power Sources 196:6934–6938

    Article  CAS  Google Scholar 

  12. Su N, Lyu Y, Guo B (2018) Electrochemical and in-situ X-ray diffraction studies of Na1.2Ni0.2Mn0.2Ru0.4O2 as a cathode material for sodium-ion batteries. Electrochem Commun 87:71–75

    Article  CAS  Google Scholar 

  13. Tamaru M, Wang X, Okubo M, Yamada A (2013) Layered Na2RuO3 as a cathode material for Na-ion batteries. Electrochem Commun 33:23–26

    Article  CAS  Google Scholar 

  14. Song S, Kotobuki M, Zheng F, Li Q, Xu C, Wang Y, Li WDZ, Hu N, Lu L (2017) Na-rich layered Na2Ru0.95Zr0.05O3 cathode material for Na-ion batteries. J Power Sources 342:685–689

    Article  CAS  Google Scholar 

  15. Qiao Y, Guo S, Zhu K, Liu P, Li X, Jiang K, Sun CJ, Chen M, Zhou H (2018) Reversible anionic redox activity in Na3RuO4 cathodes: a prototype Na-rich layered oxide. Energy Environ Sci 11:299–305

    Article  CAS  Google Scholar 

  16. Wang PF, Yao HR, Liu XY, Zhang JN, Gu L, Yu XQ, Yin YX, Guo YG (2017) Ti-substituted NaNi0.5Mn0.5-xTixO2 cathodes with reversible O3-P3 phase transition for high-performance sodium-ion batteries. Adv Mater 29:1700210–1700217

    Article  CAS  Google Scholar 

  17. Yu H, Guo S, Zhu Y, Ishida M, Zhou H (2014) Novel titanium-based O3-type NaTi0.5Ni0.5O2 as a cathode material for sodium ion batteries. Chem Commun 50:457–459

    Article  CAS  Google Scholar 

  18. Takahashi R, Wang H, Lewis JP (2007) Electronic structures and conductivity in peptide nanotubes. J Phys Chem B 111:9093–9098

    Article  CAS  PubMed  Google Scholar 

  19. Wang Y, Xiao R, Hu YS, Avdeev M, Chen L (2015) P2-Na0.6[Cr0.6Ti0.4]O2 cation-disordered electrode for high-rate symmetric rechargeable sodium-ion batteries. Nat Commun 6:6954–6963

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Yoda Y, Kubota K, Isozumi H, Horiba T, Komaba S (2018) Poly-ɤ-glutamate binder to enhance electrode performances of P2-Na2/3Ni1/3Mn2/3O2 for Na-ion batteries. ACS Appl Mater Interfaces 10:10986–10997

    Article  CAS  PubMed  Google Scholar 

  21. Carlier D, Cheng JH, Berthelot R, Guignard M, Yoncheva M, Stoyanova R, Hwang BJ, Delmas C (2011) The P2-Na2/3Co2/3Mn1/3O2 phase: structure, physical properties and electrochemical behavior as positive electrode in sodium battery. Dalton Trans 40:9306–9312

    Article  CAS  PubMed  Google Scholar 

  22. Kang K, Meng YS, Bréger J, Grey CP, Ceder G (2006) Electrodes with high power and high capacity for rechargeable lithium batteries. Science 311:977–980

    Article  CAS  PubMed  Google Scholar 

  23. Zhang C, Gao R, Zheng L, Hao Y, Liu X (2018) New insights into the roles of mg in improving the rate capability and cycling stability of O3-NaMn0.48Ni0.2Fe0.3Mg0.02O2 for sodium-ion batteries. ACS Appl Mater Interfaces 10:10819–10827

    Article  CAS  PubMed  Google Scholar 

  24. Li ZY, Zhang J, Gao R, Zhang H, Zheng L, Hu Z, Liu X (2016) Li-substituted co-free layered P2/O3 biphasic Na0.67Mn0.55Ni0.25Ti0.2-xLixO2 as high-rate capability cathode materials for sodium ion batteries. J Phys Chem C 120:9007–9016

    Article  CAS  Google Scholar 

  25. Yuan DD, Wang YX, Cao YL, Ai XP, Yang HX (2015) Improved electrochemical performance of Fe-substituted NaNi0.5Mn0.5O2 cathode materials for sodium-ion batteries. ACS Appl Mater Interfaces 7:8585–8591

    Article  CAS  PubMed  Google Scholar 

  26. Iliev MN, Litvinchuk AP, Meng RL, Cmaidalka J, Chu CW (2003) Raman phonons and ageing-related disorder in NaxCoO2. Physica C 402:239–242

    Article  CAS  Google Scholar 

  27. Yoncheva M, Stoyanova R, Zhecheva E, Kuzmanova E, Sendovavassileva M, Nihtianova D, Carlier D, Guignard M, Delmas C (2012) Structure and reversible lithium intercalation in a new P′3-phase: Na2/3Mn1−yFeyO2 (y = 0, 1/3, 2/3). J Mater Chem 22:23418–23427

    Article  CAS  Google Scholar 

  28. Yang HX, Xia Y, Shi YG, Tian HF, Xiao RJ, Liu X, Liu YL, Li JQ (2006) Raman spectroscopy study of α-, β-, γ− NaxCoO2 and γ− ( Ca, Sr )x CoO2. Phys Rev B 74:094301–094307

    Article  CAS  Google Scholar 

  29. Karan NK, Saavedraarias JJ, Pradhan DK, Melgarejo R, Kumar A, Thomas R, Katiyar RS (2008) Structural and electrochemical characterizations of solution derived LiMn0.5Ni0.5O2 as positive electrode for li-ion rechargeable batteries. Electrochem Solid-State Lett 11:A135–A139

    Article  CAS  Google Scholar 

  30. Julien CM, Massot M (2003) Lattice vibrations of materials for lithium rechargeable batteries I. Lithium manganese oxide spinel. Mater Sci Eng B 108:179–186

    Article  CAS  Google Scholar 

  31. Wu X, Yong JP, Ryu KS, Lee YG, Chang SH (2004) Electrochemical properties of layered Li–Cr–Mn oxides prepared at high temperature. Solid State Ionics 169:145–150

    Article  CAS  Google Scholar 

  32. Wu X, Guo J, Wang D, Zhong G, Mcdonald MJ, Yang Y (2015) P2-type Na0.66 Ni0.33–xZnxMn0.67O2 as new high-voltage cathode materials for sodium-ion batteries. J Power Sources 281:18–26

    Article  CAS  Google Scholar 

  33. Peng M, Zhang D, Zheng L, Wang X, Lin Y, Xia D, Sun Y, Guo G (2017) Hierarchical Ru-doped sodium vanadium fluorophosphates hollow microspheres as a cathode of enhanced superior rate capability and ultralong stability for sodium-ion batteries. Nano Energy 31:64–73

    Article  CAS  Google Scholar 

  34. Zhang W, Mao J, Pang WK, Guo Z, Chen Z (2017) Large-scale synthesis of ternary Sn5SbP3/C composite by ball milling for superior stable sodium-ion battery anode. Electrochim Acta 235:107–113

    Article  CAS  Google Scholar 

  35. Berthelot R, Carlier D, Delmas C (2010) Electrochemical investigation of the P2–NaxCoO2 phase diagram. Nat Mater 10:74–80

    Article  CAS  Google Scholar 

  36. Yabuuchi N, Yano M, Yoshida H, Kuze S, Komaba S (2013) Synthesis and electrode performance of O3-type NaFeO2-NaNi1/2Mn1/2O2 solid solution for rechargeable sodium batteries. J Electrochem Soc 160:A3131–A3137

    Article  CAS  Google Scholar 

  37. Liu Z, Lee JY, Lindner HJ (2001) Effects of conducting carbon on the electrochemical performance of LiCoO2 and LiMn2O4 cathodes. J Power Sources 97–98:361–365

    Article  Google Scholar 

  38. Kawaoka H, Hibino M, Zhou H, Honma I (2005) Optimization of Sonochemical synthesis condition of manganese oxide/acetylene black nanocomposite for high power lithium-ion batteries. J Electrochem Soc 152:669400–669408

    Article  CAS  Google Scholar 

  39. Lee DH, Xu J, Meng YS (2013) An advanced cathode for Na-ion batteries with high rate and excellent structural stability. Phys Chem Chem Phys 15:3304–3312

    Article  CAS  PubMed  Google Scholar 

  40. Stoyanova R, Carlier D, Sendova-Vassileva M, Yoncheva M, Zhecheva E, Nihtianova D, Delmas C (2010) Stabilization of over-stoichiometric Mn4+ in layered Na2/3MnO2. J Solid State Chem 183:1372–1379

    Article  CAS  Google Scholar 

  41. Wang Y, Yang Z, Qian Y, Gu L, Zhou H (2015) New insights into improving rate performance of lithium-rich cathode material. Adv Mater 27:3915–3920

    Article  CAS  PubMed  Google Scholar 

  42. Rudola A, Saravanan K, Mason C, Balaya P (2013) Na2Ti3O7: an intercalation based anode for sodium-ion battery applications. J Mater Chem A 1:2653–2662

    Article  CAS  Google Scholar 

  43. Li Z, Du F, Bie X, Zhang D, Cai Y, Cui X, Wang C, Chen G, Wei Y (2010) Electrochemical kinetics of the Li[Li0.23Co0.3Mn0.47]O2 cathode material studied by GITT and EIS. J Phys Chem C 114:22751–22757

    Article  CAS  Google Scholar 

  44. Xie J, Imanishi N, Matsumura T, Hirano A, Takeda Y, Yamamoto O (2008) Orientation dependence of Li–ion diffusion kinetics in LiCoO2 thin films prepared by RF magnetron sputtering. Solid State Ionics 179:362–370

    Article  CAS  Google Scholar 

  45. Chen Q, Qiao X, Wang Y, Zhang T, Peng C, Yin W, Liu L (2012) Electrochemical performance of Li3−xNaxV2(PO4)3/C composite cathode materials for lithium ion batteries. J Power Sources 201:267–273

    Article  CAS  Google Scholar 

  46. Shaju KM (2004) Influence of Li-ion kinetics in the cathodic performance of layered Li ( NiCoMn )O. J Electrochem Soc 151:A1324–A1332

    Article  CAS  Google Scholar 

  47. Ho C, Raistrick ID, Huggins RA (1980) Application of AC techniques to the study of lithium diffusion in tungsten trioxide thin films. J Electrochem Soc 127:343–350

    Article  CAS  Google Scholar 

  48. Upreti S, Chernova NA, Xiao J, Miller JK, Yakubovich OV, Cabana J, Grey CP, Chevrier VL, Ceder G, Musfeldt JL (2015) Crystal structure, physical properties, and electrochemistry of copper substituted LiFePO4 single crystals. Chem Mater 24:166–173

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Science and Technology Development Project of Shandong Province (2016GGX102003, 2017GGX20105), the Natural Science Foundation of Shandong Province (ZR2017BEM032), China Postdoctoral Science Foundation (2018M632673), and the Fundamental Research Funds of Shandong University (2015TB016, 2016JC009).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jianqiang Bi or Weili Wang.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Leng, M., Bi, J., Wang, W. et al. Synthesis and characterization of Ru doped NaNi0.5Mn0.3Ti0.2O2 cathode material with improved electrochemical performance for sodium-ion batteries. Ionics 25, 1105–1115 (2019). https://doi.org/10.1007/s11581-018-2830-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-018-2830-x

Keywords

Navigation