Skip to main content
Log in

Understanding the effect of electrolyte on the cycle and structure stability of high areal capacity Si-Al film electrode

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

High areal capacity silicon-based films are attracting much attention in high energy density lithium-ion batteries (LIBs). However, the enormous volume change of Si, causing film crack and instability of solid electrolyte interphase (SEI) layer, leads to a rapid capacity decay. In this work, the structure evolution and electrochemical performance of Si-Al film (~ 2.5 mAh cm-2) are systematically investigated by galvanostatic discharge/charge test, field-emission scanning electron microscopy (FESEM), electrochemical impedance spectroscopy (EIS), and X-ray photoelectron spectroscopy (XPS). Particularly, the inner structure is carefully analyzed by the cross-sectional images. In the EC-based and FEC-added electrolytes, the columnar structure is remained. Interestingly, the rigid SEI layer formed in FEC-based electrolyte restrains the surface tensile stress, and the Si-Al film is cracked from the inner part and further rearranged towards compact piling up during cycling. The new formed film displays a weak volume expansion and an improved capacity retention of 85.0% after 100 cycles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Manthiram A, Knight JC, Myung S-T, Oh S-M, Sun Y-K (2016) Nickel-rich and lithium-rich layered oxide cathodes: progress and perspectives. Adv Energy Mater https://doi.org/10.1002/aenm.201501010

  2. Ko M, Oh P, Chae S, Cho W, Cho J (2015) Considering critical factors of Li-rich cathode and Si anode materials for practical Li-ion cell applications. Small 11:4058–4073

    Article  CAS  PubMed  Google Scholar 

  3. Lu J, Chen Z, Ma Z, Pan F, Curtiss LA, Amine K (2016) The role of nanotechnology in the development of battery materials for electric vehicles. Nat Nanotechnol 11:1031–1038

    Article  CAS  PubMed  Google Scholar 

  4. Chen G, Yan L, Luo H, Guo S (2016) Nanoscale engineering of heterostructured anode materials for boosting lithium-ion storage. Adv Mater 28:7580–7602

    Article  CAS  PubMed  Google Scholar 

  5. Yan Y, Ben L, Zhan Y, Huang X (2016) Nano-Sn embedded in expanded graphite as anode for lithium ion batteries with improved low temperature electrochemical performance. Electrochim Acta 187:186–192

    Article  CAS  Google Scholar 

  6. Ma D, Cao Z, Hu A (2014) Si-based anode materials for Li-ion batteries: a mini review. Nano-Micro Lett 6:347–358

    Article  CAS  Google Scholar 

  7. Wu H, Cui Y (2012) Designing nanostructured Si anodes for high energy lithium ion batteries. Nano Today 7:414–429

    Article  CAS  Google Scholar 

  8. Liu XH, Zhong L, Huang S, Mao SX, Zhu T, Huang JY (2012) Size-dependent fracture of silicon nanoparticles during lithiation. ACS Nano 6:1522–1531

    Article  CAS  PubMed  Google Scholar 

  9. Yu J, Yang J, Feng X, Jia H, Wang J, Lu W (2014) Uniform carbon coating on silicon nanoparticles by dynamic CVD process for electrochemical lithium storage. Ind Eng Chem Res 53:12697–12704

    Article  CAS  Google Scholar 

  10. Kasukabe T, Nishihara H, Iwamura S, Kyotani T (2016) Remarkable performance improvement of inexpensive ball-milled Si nanoparticles by carbon-coating for Li-ion batteries. J Power Sources 319:99–103

    Article  CAS  Google Scholar 

  11. Gueon D, Lee J, Lee JK, Moon JH (2016) Carbon-coated silicon nanoparticle-embedded carbon sphere assembly electrodes with enhanced performance for lithium-ion batteries. RSC Adv 6:38012–38017

    Article  CAS  Google Scholar 

  12. Salvatierra RV, Raji A-RO, Lee S-K, Ji Y, Li L, Tour JM (2016) Silicon nanowires and lithium cobalt oxide nanowires in graphene nanoribbon papers for full lithium ion battery. Adv Energy Mater https://doi.org/10.1002/aenm.201600918

  13. Chakrapani V, Rusli F, Filler MA, Kohl PA (2011) Quaternary ammonium ionic liquid electrolyte for a silicon nanowire-based lithium ion battery. J Phys Chem C 115:22048–22053

    Article  CAS  Google Scholar 

  14. Wu H, Chan G, Choi JW, Ryu I, Yao Y, McDowell MT, Lee SW, Jackson A, Yang Y, Hu L, Cui Y (2012) Stable cycling of double-walled silicon nanotube battery anodes through solid-electrolyte interphase control. Nat Nanotechnol 7:310–315

    Article  CAS  PubMed  Google Scholar 

  15. Takezawa H, Ito S, Yoshizawa H, Abe T (2017) Surface composition of a SiOx film anode cycled in carbonate electrolyte for Li-ion batteries. Electrochim Acta 229:438–444

    Article  CAS  Google Scholar 

  16. Reyes Jiménez A, Klöpsch R, Wagner R, Rodehorst UC, Kolek M, Nölle R, Winter M, Placke T (2017) A step toward high-energy silicon-based thin film lithium ion batteries. ACS Nano 11:4731–4744

    Article  CAS  PubMed  Google Scholar 

  17. Wu C-Y, Chang C-C, Duh J-G (2016) Silicon nitride coated silicon thin film on three dimensions current collector for lithium ion battery anode. J Power Sources 325:64–70

    Article  CAS  Google Scholar 

  18. Farmakis F, Elmasides C, Fanz P, Hagen M, Georgoulas N (2015) High energy density amorphous silicon anodes for lithium ion batteries deposited by DC sputtering. J Power Sources 293:301–305

    Article  CAS  Google Scholar 

  19. Piwko M, Thieme S, Weller C, Althues H, Kaskel S (2017) Enabling electrolyte compositions for columnar silicon anodes in high energy secondary batteries. J Power Sources 362:349–357

    Article  CAS  Google Scholar 

  20. Farmakis F, Elmasides C, Selinis P, Georgoulas N (2017) Impact of electrolyte on the electrochemical performance of Lithium-ion half and full cells with Silicon film anodes. Electrochim Acta 245:99–106

    Article  CAS  Google Scholar 

  21. Fridman K, Sharabi R, Elazari R, Gershinsky G, Markevich E, Salitra G, Aurbach D, Garsuch A, Lampert J (2013) A new advanced lithium ion battery: Combination of high performance amorphous columnar silicon thin film anode, 5V LiNi0.5Mn1.5O4 spinel cathode and fluoroethylene carbonate-based electrolyte solution. Electrochem Commun 33:31–34

    Article  CAS  Google Scholar 

  22. Piwko M, Kuntze T, Winkler S, Straach S, Härtel P, Althues H, Kaskel S (2017) Hierarchical columnar silicon anode structures for high energy density lithium sulfur batteries. J Power Sources 351:183–191

    Article  CAS  Google Scholar 

  23. Liu P, Zheng J, Qiao Y, Li H, Wang J, Wu M (2014) Fabrication and characterization of porous Si-Al films anode with different macroporous substrates for lithium-ion batteries. J Solid State Electrochem 18:1799–1806

    Article  CAS  Google Scholar 

  24. Zhang S, He M, Su C-C, Zhang Z (2016) Advanced electrolyte/additive for lithium-ion batteries with silicon anode. Curr Opin Chem Eng 13:24–35

    Article  CAS  Google Scholar 

  25. Luo F, Chu G, Xia X, Liu B, Zheng J, Li J, Li H, Gu C, Chen L (2015) Thick solid electrolyte interphases grown on silicon nanocone anodes during slow cycling and their negative effects on the performance of Li-ion batteries. Nanoscale 7:7651–7658

    Article  CAS  PubMed  Google Scholar 

  26. Shobukawa H, Alvarado J, Yang Y, Meng YS (2017) Electrochemical performance and interfacial investigation on Si composite anode for lithium ion batteries in full cell. J Power Sources 359:173–181

    Article  CAS  Google Scholar 

  27. Choi N-S, Yew KH, Lee KY, Sung M, Kim H, Kim S-S (2006) Effect of fluoroethylene carbonate additive on interfacial properties of silicon thin-film electrode. J Power Sources 161:1254–1259

    Article  CAS  Google Scholar 

  28. Shkrob IA, Wishart JF, Abraham DP (2015) What makes fluoroethylene carbonate different? J Phys Chem C 119:14954–14964

    Article  CAS  Google Scholar 

  29. Nakai H, Kubota T, Kita A, Kawashima A (2011) Investigation of the solid electrolyte interphase formed by fluoroethylene carbonate on Si electrodes. J Electrochem Soc 158:A798–A801

    Article  CAS  Google Scholar 

  30. Petibon R, Chevrier VL, Aiken CP, Hall DS, Hyatt SR, Shunmugasundaram R, Dahn JR (2016) Studies of the capacity fade mechanisms of LiCoO2/Si-alloy: graphite cells. J Electrochem Soc 163:A1146–A1156

    Article  CAS  Google Scholar 

  31. Chen X, Li X, Mei D, Feng J, Hu MY, Hu J, Engelhard M, Zheng J, Xu W, Xiao J, Liu J, Zhang J-G (2014) Reduction mechanism of fluoroethylene carbonate for stable solid–electrolyte interphase film on silicon anode. ChemSusChem 7:549–554

    Article  CAS  PubMed  Google Scholar 

  32. Soto FA, Martinez de la Hoz JM, Seminario JM, Balbuena PB (2016) Modeling solid-electrolyte interfacial phenomena in silicon anodes. Curr Opin Chem Eng 13:179–185

    Article  Google Scholar 

  33. Jung R, Metzger M, Haering D, Solchenbach S, Marino C, Tsiouvaras N, Stinner C, Gasteiger HA (2016) Consumption of fluoroethylene carbonate (FEC) on Si-C composite electrodes for Li-ion batteries. J Electrochem Soc 163:A1705–A1716

    Article  CAS  Google Scholar 

  34. Chen L, Wang K, Xie X, Xie J (2006) Enhancing electrochemical performance of silicon film anode by vinylene carbonate electrolyte additive. Electrochem Solid-State Lett 9:A512–A515

    Article  CAS  Google Scholar 

  35. Soto FA, Ma Y, Martinez de la Hoz JM, Seminario JM, Balbuena PB (2015) Formation and growth mechanisms of solid-electrolyte interphase layers in rechargeable batteries. Chem Mater 27:7990–8000

    Article  CAS  Google Scholar 

  36. Haruta M, Okubo T, Masuo Y, Yoshida S, Tomita A, Takenaka T, Doi T, Inaba M (2017) Temperature effects on SEI formation and cyclability of Si nanoflake powder anode in the presence of SEI-forming additives. Electrochim Acta 224:186–193

    Article  CAS  Google Scholar 

  37. Nguyen CC, Lucht BL (2016) Improved cycling performance of Si nanoparticle anodes via incorporation of methylene ethylene carbonate. Electrochem Commun 66:71–74

    Article  CAS  Google Scholar 

  38. Han G-B, Lee J-N, Choi JW, Park J-K (2011) Tris(pentafluorophenyl) borane as an electrolyte additive for high performance silicon thin film electrodes in lithium ion batteries. Electrochim Acta 56:8997–9003

    Article  CAS  Google Scholar 

  39. Han G-B, Ryou M-H, Cho KY, Lee YM, Park J-K (2010) Effect of succinic anhydride as an electrolyte additive on electrochemical characteristics of silicon thin-film electrode. J Power Sources 195:3709–3714

    Article  CAS  Google Scholar 

  40. Dalavi S, Guduru P, Lucht BL (2012) Performance enhancing electrolyte additives for lithium ion batteries with silicon anodes. J Electrochem Soc 159:A642–A646

    Article  CAS  Google Scholar 

  41. Fleischauer MD, Obrovac MN, Dahn JR (2008) Al–Si thin-film negative electrodes for Li-ion batteries. J Electrochem Soc 155:A851–A854

    Article  CAS  Google Scholar 

  42. Dalla Corte DA, Gouget-Laemmel AC, Lahlil K, Caillon G, Jordy C, Chazalviel J-N, Gacoin T, Rosso M, Ozanam F (2016) Molecular grafting on silicon anodes: artificial solid-electrolyte interphase and surface stabilization. Electrochim Acta 201:70–77

    Article  CAS  Google Scholar 

  43. Lee JG, Kim J, Lee JB, Park H, Kim H-S, Ryu JH, Jung DS, Kim EK, Oh SM (2017) Mechanical damage of surface films and failure of nano-sized silicon electrodes in lithium ion batteries. J Electrochem Soc 164:A6103–A6109

    Article  CAS  Google Scholar 

  44. Hamon Y, Brousse T, Jousse F, Topart P, Buvat P, Schleich DM (2001) Aluminum negative electrode in lithium ion batteries. J Power Sources 97–98:185–187

    Article  Google Scholar 

  45. Zhang Q, Liu J, Wu Z-Y, Li J-T, Huang L, Sun S-G (2016) 3D nanostructured multilayer Si/Al film with excellent cycle performance as anode material for lithium-ion battery. J Alloys Compd 657:559–564

    Article  CAS  Google Scholar 

  46. Takezawa H, Iwamoto K, Ito S, Yoshizawa H (2013) Electrochemical behaviors of nonstoichiometric silicon suboxides (SiOx) film prepared by reactive evaporation for lithium rechargeable batteries. J Power Sources 244:149–157

    Article  CAS  Google Scholar 

  47. Schroder K, Alvarado J, Yersak TA, Li J, Dudney N, Webb LJ, Meng YS, Stevenson KJ (2015) The effect of fluoroethylene carbonate as an additive on the solid electrolyte interphase on silicon lithium-ion electrodes. Chem Mater 27:5531–5542

    Article  CAS  Google Scholar 

  48. Tokranov A, Kumar R, Li C, Minne S, Xiao X, Sheldon BW (2016) Control and optimization of the electrochemical and mechanical properties of the solid electrolyte interphase on silicon electrodes in lithium ion batteries. Adv Energy Mater https://doi.org/10.1002/aenm.201502302

Download references

Funding

This work was sponsored by Shanghai Sailing Program (17YF1413500).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jie Zhang.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, J., Shen, C., Liu, P. et al. Understanding the effect of electrolyte on the cycle and structure stability of high areal capacity Si-Al film electrode. Ionics 25, 483–492 (2019). https://doi.org/10.1007/s11581-018-2816-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-018-2816-8

Keywords

Navigation