Skip to main content
Log in

Sol-gel synthesis of porous Na3Fe2(PO4)3 with enhanced sodium-ion storage capability

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

Porous Na3Fe2(PO4)3 has been synthesized via a sol-gel method using citric acid as a metal ion complexing agent and polyvinyl alcohol as a structure-guiding agent. The obtained porous Na3Fe2(PO4)3 with particle size distribution of 40–60 nm has a typical NASICON structure in a space group of C2/c and the specific surface area is 40.2 m2 g−1. Electrochemical measurement results indicate that the initial discharge-specific capacity of porous Na3Fe2(PO4)3 is up to 92.5 mAh g−1 and maintains at 86 mAh g−1 after 200 cycles at 20 mA g−1 (92% of theoretical capacity) and the corresponding coulombic efficiency is up to 100% as well as high rate capability performance (71.5 mAh g−1 after 1000 cycles under 500 mA g−1). The excellent electrochemical properties are attributed to its particular [Fe2(PO4)3] “lantern units” stacked crystal structure and porous morphology, which significantly improves intercalation/de-intercalation kinetic of sodium ions.

Porous Na3Fe2(PO4)3 was synthesized via a simple sol-gel method using citric acid as a metal ion complexing agent and polyvinyl alcohol as a structure-guiding agent, which acted as cathode material in sodium-ion batteries. It showed very long cycle stability and kept high reversible-specific discharge capacity of 71.5 mAh g−1 at the current rate of 5 C, with the very flat voltage plateaus located at about 2.5 V.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Nooredn RV (2014) The rechargeable revolution: a better battery, Nature, 507

  2. Larcher D, Tarascon JM (2015) Towards greener and more sustainable batteries for electrical energy storage. Nat Chem 7:19–29

    Article  CAS  PubMed  Google Scholar 

  3. U.M.Y. U.S. Geological Survey (USGS) (2012) volume I. metals and minerals, mineral commodity summaries 2010, January, 2010

  4. Kim S-W, Seo D-H, Ma X, Ceder G, Kang K (2012) Electrode materials for rechargeable sodium-ion batteries: potential alternatives to current lithium-ion batteries. Adv Energy Mater 2:710–721

    Article  CAS  Google Scholar 

  5. Yabuuchi N, Kubota K, Dahbi M, Komaba S (2014) Research development on sodium-ion batteries. Chem Rev 114:11636–11682

    Article  CAS  PubMed  Google Scholar 

  6. Palomares V, Serras P, Villaluenga I, Hueso KB, Carretero-Gonzalez J, Rojo T (2012) Na-ion batteries, recent advances and present challenges to become low cost energy storage systems. Energy Environ Sci 5:5884–5901

    Article  CAS  Google Scholar 

  7. Nithya C, Gopukumar S (2015) Sodium ion batteries: a newer electrochemical storage. Wires Energy Environ 4:253–278

    Article  CAS  Google Scholar 

  8. Padhi AK, Nanjundaswamy KS, Goodenough JB (1997) Phospho-olivines as positive-electrode materials for rechargeable lithium batteries. J Electrochem Soc 144:1188–1194

    Article  CAS  Google Scholar 

  9. Zaghib K, Julien CM (2005) Structure and electrochemistry of FePO4·2H2O hydrate. J Power Sources 142:279–284

    Article  CAS  Google Scholar 

  10. Karami H, Taala F (2011) Synthesis, characterization and application of Li3Fe2(PO4)3 nanoparticles as cathode of lithium-ion rechargeable batteries. J Power Sources 196:6400–6411

    Article  CAS  Google Scholar 

  11. Yin Y, Hu Y, Wu P, Zhang H, Cai C (2012) A graphene-amorphous FePO4 hollow nanosphere hybrid as a cathode material for lithium ion batteries. Chem Commun 48:2137–2139

    Article  CAS  Google Scholar 

  12. Guo B, Ruan H, Zheng C, Fei H, Wei M (2013) Hierarchical LiFePO4 with a controllable growth of the (010) facet for lithium-ion batteries. Sci Rep 3:2788–2793

    Article  PubMed  PubMed Central  Google Scholar 

  13. Zhang SM, Zhang JX, Xu SJ, Yuan XJ, Tan T (2013) Synthesis, morphological analysis and electrochemical performance of iron hydroxyl phosphate as a cathode material for lithium ion batteries. J Power Sources 243:274–279

    Article  CAS  Google Scholar 

  14. Liu Y, Xu S, Zhang S, Zhang J, Fan J, Zhou Y (2015) Direct growth of FePO4/reduced graphene oxide nanosheet composites for the sodium-ion battery. J Mater Chem A 3:5501–5508

    Article  CAS  Google Scholar 

  15. Xu S, Zhang S, Zhang J, Tan T, Liu Y (2014) A maize-like FePO4@MCNT nanowire composite for sodium-ion batteries via a microemulsion technique. J Mater Chem A 2:7221–7228

    Article  CAS  Google Scholar 

  16. Liu Y, Zhou Y, Zhang J, Zhang S, Ren P (2015) Amorphous iron phosphate/carbonized polyaniline nanorods composite as cathode material in sodium-ion batteries. J Solid State Electrochem

  17. Liu Y, Zhou Y, Zhang J, Zhang S, Xu S (2015) The transformation from amorphous iron phosphate to sodium iron phosphate in sodium-ion batteries. Phys Chem Chem Phys 3:22144–22151

    Article  CAS  Google Scholar 

  18. Liu Y, Zhou Y, Zhang J, Zhang S, Ren P (2016) The relation between the structure and electrochemical performance of sodiated iron phosphate in sodium-ion batteries. J Power Sources 314:1–9

    Article  CAS  Google Scholar 

  19. Duan W, Zhu Z, Li H, Hu Z, Zhang K, Cheng F, Chen J (2014) Na3V2(PO4)3@C core–shell nanocomposites for rechargeable sodium-ion batteries. J Mater Chem A 2:8668–8675

    Article  CAS  Google Scholar 

  20. Bianchini M, Brisset N, Fauth F, Weill F, Elkaim E, Suard E, Masquelier C, Croguennec L (2014) Na3V2(PO4)2F3 revisited: a high-resolution diffraction study. Chem Mater 26:4238–4247

    Article  CAS  Google Scholar 

  21. Shiva K, Singh P, Zhou W, Goodenough JB (2016) NaFe2PO4(SO4)2: a potential cathode for a Na-ion battery. Energy Environ Sci 9:3103–3106

    Article  CAS  Google Scholar 

  22. Yanjun C, Youlong X, Sun Xiaofei Z, Baofeng Z, Shengnan H, Long Li L (2018) Preventing structural degradation from Na3V2(PO4)3 to V2(PO4)3: F-doped Na3V2(PO4)3/C cathode composite with stable lifetime for sodium ion batteries. J Power Sources 378:423–432

    Article  CAS  Google Scholar 

  23. Zhu Q, Cheng H, Zhang X, He L, Hu L, Yang J (2018) Improvement in electrochemical performance of Na3V2(PO4)3/C cathode material for sodium-ion batteries by K-Ca co-doping. Electrochim Acta, 281

  24. Masquelier CWC, Rodrı guez-Carvajal J, Gaubicher J, Nazar L (2000) A powder neutron diffraction investigation of the two rhombohedral NASICON analogues: γ-Na3Fe2(PO4)3 and Li3Fe2(PO4)3. Chem Mater 12:525–532

    Article  CAS  Google Scholar 

  25. Kabbour H, Coillot D, Colmont M, Masquelier C, Mentre O (2011) alpha-Na3M2(PO4)3 (M = Ti, Fe): absolute cationic ordering in NASICON-type phases. J Am Chem Soc 133:11900–11903

    Article  CAS  PubMed  Google Scholar 

  26. Liu Y, Zhou Y, Zhang J, Xia Y, Zhang S (2016) Monoclinic phase Na3Fe2(PO4 )3: synthesis, structure, and electrochemical performance as cathode material in sodium-ion batteries. ACS Sustain Chem Eng 5:1306–1314

    Article  CAS  Google Scholar 

  27. Rajagopalan R, Chen B, Zhang Z, Wu XL, Du Y, Huang Y, Li B, Zong Y, Wang J, Nam GH, Sindoro M, Dou SX, Liu HK, Zhang H (2017) Improved reversibility of Fe3+ /Fe4+ redox couple in sodium super ion conductor type Na3Fe2(PO4)3 for sodium-ion batteries. Adv Mater 29:1605694

    Article  CAS  Google Scholar 

  28. Kim H, Shakoor RA, Park C, Lim SY, Kim JS, Jo YN, Cho W, Miyasaka K, Kahraman R, Jung Y, Choi JW (2013) Na2FeP2O7 as a promising iron-based pyrophosphate cathode for sodium rechargeable batteries: a combined experimental and theoretical study. Adv Funct Mater 23:1147–1155

    Article  CAS  Google Scholar 

  29. Chen X, Du K, Lai Y, Shang G, Li H, Xiao Z, Chen Y, Li J, Zhang Z (2017) In-situ carbon-coated Na2FeP2O7 anchored in three-dimensional reduced graphene oxide framework as a durable and high-rate sodium-ion battery cathode. J Power Sources 357:164–172

    Article  CAS  Google Scholar 

  30. Wang X, Zhang Y, Luo W, Elzatahry AA, Cheng X, Alghamdi A, Abdullah AM, Deng Y, Zhao D (2016) Synthesis of ordered mesoporous silica with tunable morphologies and pore sizes via a nonpolar solvent-assisted Stöber method. Chem Mater 28:2356–2362

    Article  CAS  Google Scholar 

  31. Fang Y, Lv Y, Che R, Wu H, Zhang X, Gu D, Zheng G, Zhao D (2013) Two-dimensional mesoporous carbon nanosheets and their derived graphene nanosheets: synthesis and efficient lithium ion storage. J Am Chem Soc 135:1524–1530

    Article  CAS  PubMed  Google Scholar 

  32. Rici L, Brost RA, Delany AC, Huebert BJ (1988) Numerical modeling of concentrations and fluxes of HNO3, NH3, and NH4NO3 near the surface. J Geophys Res 93:7137–7152

    Article  Google Scholar 

  33. Liu S, Xiu Z, Liu Ja, Xu F, Yu W, Yu J, Feng G (2008) Combustion synthesis and characterization of perovskite SrTiO3 nanopowders. J Alloys Compd 457:L12–L14

    Article  CAS  Google Scholar 

  34. Nagamiga T (1952) On the theory of the dielectric, piezoelectric, and elastic properties of NH4H2PO4. Prog Theor Phys 7:275–284

  35. Jones, Liewellyn H, McLaren, Eugene (1954) Infrared spectra of CH3COONa and CD3COONa and assignments of vibrational frequencies. J Chem Phys 22:1796–1800

    Article  CAS  Google Scholar 

  36. Thomas LV, Arun U, Remya S, Nair PD (2009) A biodegradable and biocompatible PVA–citric acid polyester with potential applications as matrix for vascular tissue engineering. J Mater Sci-Mater M 20:259–269

    Article  CAS  Google Scholar 

  37. Lertpanyapornchai B, Yokoi T, Ngamcharussrivichai C (2016) Citric acid as complexing agent in synthesis of mesoporous strontium titanate via neutral-templated self-assembly sol–gel combustion method. Microporous Mesoporous Mater 226:505–509

    Article  CAS  Google Scholar 

  38. Wang Y, Li H, He P, Hosono E, Zhou H (2010) Nano active materials for lithium-ion batteries. Nanoscale 2:1294–1305

    Article  CAS  PubMed  Google Scholar 

  39. Larson AC (1994) Dreele, General structure analysis system (GSAS), Los Alamos National Laboratory Report LAUR. Los Alamos National Laboratory Report LAUR, 86–748

  40. Sing KS (1985) Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity (recommendations 1984). Pure Appl Chem 57:603–619

    Article  CAS  Google Scholar 

  41. Lee J, Orilall MC, Warren SC, Kamperman M, DiSalvo FJ, Wiesner U (2008) Direct access to thermally stable and highly crystalline mesoporous transition-metal oxides with uniform pores. Nat Mater 7:222–228

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was financially supported by the financial support of Shanghai Science and Technology Commission (14DZ2261000). This work was supported by the national key research and development Program of China (2016YFB0901500).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Junxi Zhang or Yongyao Xia.

Additional information

Highlights

• Monoclinic Na3Fe2(PO4)3 is synthesized via sol-gel method.

• Na3Fe2(PO4)3 shows open mesoporous structure with diameters ranging from 40 to 60 nm.

• Porous Na3Fe2(PO4)3 displays excellent electrochemical performance in SIBs.

• Porous Na3Fe2(PO4)3 shows the rate performance of 71.5 mAh g−1 at 500 mA g-1 after 1000 cycles.

Electronic supplementary material

ESM 1

(DOC 4881 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cao, Y., Liu, Y., Chen, T. et al. Sol-gel synthesis of porous Na3Fe2(PO4)3 with enhanced sodium-ion storage capability. Ionics 25, 1083–1090 (2019). https://doi.org/10.1007/s11581-018-2804-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-018-2804-z

Keywords

Navigation