Skip to main content
Log in

Montmorillonite incorporated polymethylmethacrylate matrix containing lithium trifluoromethanesulphonate (LTF) salt: thermally stable polymer nanocomposite electrolyte for lithium-ion batteries application

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

High and low content of montmorillonite incorporated polymethylmethacrylate matrix in the presence of lithiumtriflate salt was investigated and studied. All samples were synthesized using the solution cast technique method. Different techniques (X-ray diffraction, FT-IR, DSC, TG, and SEM) were used for structure characterization. X-ray diffraction (XRD) and Fourier transform infrared (FT-IR) analyses confirmed the complete dissolution of lithiumtriflate salt and intercalation of montmorillonite within the polymethylmethacrylate matrix. The different contents of montmorillonite showed different behaviors in both of structure and properties. The sample containing the low content of 5 wt% montmorillonite showed the highest AC- conductivity value (σAc = 2.09 × 10−6 Ω−1.cm−1, at room temperature) with a big difference to the other ones. The same sample also showed a good thermal stability (Td = 378 °C). Electrochemical stability of the same sample was also studied. All results were collected and discussed.

Low MMT content incorporated PMMA matrix containing LTF salt: polymer nanocomposite electrolyte exhibiting good conductivity and thermally stable behavior.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Scheme 1
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

References

  1. Stephan AM, Nahm KS (2006) Review on composite polymer electrolytes for lithium batteries. Polymer 47:5952–5964

    Article  CAS  Google Scholar 

  2. Quartarone E, Mustarelli P (2011) Electrolytes for solid-state lithium rechargeable batteries: recent advances and perspectives. Chem Soc Rev 40:2525–2540

    Article  CAS  PubMed  Google Scholar 

  3. Lago N, Garcia-Calvo O, Lopez del Amo JM, Rojo T, Armand M (2015) All-solid-state lithium-ion batteries with grafted ceramic nanoparticles dispersed in solid polymer electrolytes. ChemSusChem 8:3039–3043

    Article  CAS  PubMed  Google Scholar 

  4. Xue Z, He D, Xie X (2015) Poly(ethylene oxide)-based electrolytes for lithium-ion batteries. J Mater Chem A 3:19218–19253

    Article  CAS  Google Scholar 

  5. Long L, Wang S, Xiao M, Meng Y (2016) Polymer electrolytes for lithium polymer batteries. J Mater Chem A 4:10038–10069

    Article  CAS  Google Scholar 

  6. Yue L, Ma J, Zhang J, Zhao J, Dong S, Liu Z, Cui G, Che L (2016) All solid-state polymer electrolytes for high-performance lithium ion batteries. Energy Storage Materials 5:139–164

  7. Ngai KS, Ramesh S, Ramesh K, Juan JC (2016) A review of polymer electrolytes: fundamental, approaches and applications. Ionics 22:1259–1279

    Article  CAS  Google Scholar 

  8. Wang W, Alexandridis P (2016) Composite polymer electrolytes: nanoparticles affect structure and properties. Polymers 8(11)(387):1–36

  9. Choi SW, Kim JR, Ahn YR, Jo SM, Cairns EJ (2007) Characterization of electrospun PVdF fiber-based polymer electrolytes. Chem Mater 19:104–115

    Article  CAS  Google Scholar 

  10. Masoud EM (2016) Nano lithium aluminate filler incorporating gel lithium triflate polymer composite: preparation, characterization and application as an electrolyte in lithium ion batteries. Polym Test 56:65–73

    Article  CAS  Google Scholar 

  11. Senthil Kumar P, Sakunthala A, Reddy MV, Prabu M (2018) Structural, morphological, electrical and electrochemical study on plasticized PVdF-HFP/PEMA blended polymer electrolyte for lithium polymer battery application. Solid State Ionics 319:256–265

    Article  CAS  Google Scholar 

  12. Bohnke O, Frand G, Rezrazi M, Rousselot C, Truche C (1993) Fast ion transport in new lithium electrolytes gelled with PMMA. 1. Influence of polymer concentration. Solid State Ionics 66:97–104

    Article  CAS  Google Scholar 

  13. Raghavan P, Manuel J, Zhao X, Kim DS, Ahn JH, Nah C (2011) Preparation and electrochemical characterization of gel polymer electrolyte based on electrospun polyacrylonitrile nonwoven membranes for lithium batteries. J Power Sources 196:6742–6749

    Article  CAS  Google Scholar 

  14. Arya A, Sharma AL (2017) Polymer electrolytes for lithium ion batteries: a critical study. Ionics 23(3):497–540

    Article  CAS  Google Scholar 

  15. Arya A, Sharma AL (2017) Insights into the use of polyethylene oxide in energy storage/conversion devices: a critical review. J Phys D Appl Phys 50(44):443002–443065

  16. Arya A, Sharma AL (2018) Effect of salt concentration on dielectric properties of Li-ion conducting blend polymer electrolytes. J Mater Sci Mater Electron 29(20):17903–17920

  17. Raghavan P, Zhao X, Shin C, Baek DH, Choi JW, Manuel J, Heo MY, Ahn JH, Nah C (2010) Preparation and electrochemical characterization of polymer electrolytes based on electrospun poly(vinylidene fluoride-co-hexafluoropropylene)/polyacrylonitrile blend/composite membranes for lithium batteries. J Power Sources 195:6088–6094

    Article  CAS  Google Scholar 

  18. Sathish S, Shekar BC (2014) Preparation and characterization of nano scale PMMA thin films. Indian J Pure Appl Phys 52:64–67

  19. Noor SAM, Bayley PM, Forsyth M, MacFarlane DR (2013) Ionogels based on ionic liquids as potential highly conductive solid state electrolytes. Electrochim Acta 91:219–226

    Article  CAS  Google Scholar 

  20. Carvalho TIS (2013) Development of ion jelly thin films for electrochemical devices. Faculdade de Ciência e Tecnologia da Universidade Nova de Lisboa

  21. Zai-Lai X, Jeličić A, Wang F-P, Rabu P, Friedrich A (2010) Transparent, flexible, and paramagnetic ionogels based on PMMA and the iron-based ionic liquid 1-butyl-3-methylimidazolium tetrachloroferrate(III) [Bmim][FeCl4]. J Mater Chem 20:9543–9549

  22. Lunstroot K, Driesen K, Nockemann P, Viau L, Mutin PH, Vioux A, Binnemans K (2010) Ionic liquid as plasticizer for europium(iii)-doped luminescent poly(methyl methacrylate) films. Phys Chem Chem Phys 12:1879–1885

    Article  CAS  PubMed  Google Scholar 

  23. Masoud EM, Elbellihi A-A, Bayoumy WA, Mousa MA (2013) Organic–inorganic composite polymer electrolyte based on PEO–LiClO4 and nano-Al2O3 filler for lithium polymer batteries: Dielectric and transport properties. Alloys Compd 575:223–228

  24. Zhou J, Fedkiw PS (2004) Ionic conductivity of composite electrolytes based on oligo(ethylene oxide) and fumed oxides. Solid State Ionics 166:275–293

    Article  CAS  Google Scholar 

  25. Masoud EM, Hassan ME, Wahdaan SE, Elsayed SR, Elsayed SA (2016) Gel P (VdF/HFP)/PVAc/lithium hexafluorophosphate composite electrolyte containing nano ZnO filler for lithium ion batteries application: effect of nano filler concentration on structure, thermal stability and transport properties. Polym Test 56:277–286

    Article  CAS  Google Scholar 

  26. Moskwiak M, Giska I, Borkowska R, Zalewska A, Marczewski M, Marczewska H, Wieczorek W (2006) Physico- and electrochemistry of composite electrolytes based on PEODME–LiTFSI with TiO2. J Power Sources 159:443–448

    Article  CAS  Google Scholar 

  27. Sannier L, Zalewska A, Wieczorek W, Marczewski M, Marczewska H (2007) Impact of “Super Acid” like filler on the properties of a PEGDME/LiClO4 system. Electrochim Acta 52:5685–5689

    Article  CAS  Google Scholar 

  28. Stolarska M, Niedzicki L, Borkowska R, Zalewska A, Wieczorek W (2007) Structure, transport properties and interfacial stability of PVdF/HFP electrolytes containing modified inorganic filler. ElectrochimActa 53:1512–1517

    Article  CAS  Google Scholar 

  29. Vaia R, Vasudevan S, Krawiec W, Scanlon L, Giannelis E (1995) New polymer electrolyte nanocomposites: melt intercalation of poly(ethylene oxide) in mica-type silicates. Adv Mater 7:154–156

    Article  CAS  Google Scholar 

  30. Chen H, Chang FC (2001) The novel polymer electrolyte nanocomposite composed of poly(ethylene oxide), lithium triflate and mineral clay. Polymer 42:9763–9769

    Article  CAS  Google Scholar 

  31. Chen H, Chiu C, Chang F (2002) Conductivity enhancement mechanism of the poly(ethylene oxide)/modified-clay/LiClO4 systems. J Polym Sci B Polym Phys 40:1342–1353

    Article  CAS  Google Scholar 

  32. Fan L, Nan C, Dang Z (2002) Effect of modified montmorillonites on the ionic conductivity of (PEO)16LiClO4 electrolytes. Electrochim Acta 47:3541–3544

    Article  CAS  Google Scholar 

  33. Chen H, Chang F (2001) Interaction mechanism of a novel polymer electrolyte composed of poly(acrylonitrile), lithium triflate, and mineral clay. J Polym Sci B Polym Phys 39:2407–2419

    Article  CAS  Google Scholar 

  34. Meneghetti P, Qutubuddin S, Webber A (2004) Synthesis of polymer gel electrolyte with high molecular weight poly(methyl methacrylate)–clay nanocomposite. Electrochim Acta 49:4923–4931

    Article  CAS  Google Scholar 

  35. Deka M, Kumar A (2010) Enhanced electrical and electrochemical properties of PMMA–clay nanocomposite gel polymer electrolytes. Electrochim Acta 55:1836–1842

    Article  CAS  Google Scholar 

  36. Aravindan V, Vickraman P (2007) Polyvinylidenefluoride–hexafluoropropylene based nanocomposite polymer electrolytes (NCPE) complexed with LiPF3(CF3CF2)3. Eur Polym J 43:5121–5127

    Article  CAS  Google Scholar 

  37. Saikia D, Chen-Yang YW, Chen YT, Li YK, Lin SI (2008) Investigation of ionic conductivity of composite gel polymer electrolyte membranes based on P(VDF-HFP), LiClO4 and silica aerogel for lithium ion battery. Desalination 234:24–32

    Article  CAS  Google Scholar 

  38. Manuel Stephen A, Nahm KS, Kulandainathan MA, Ravi G, Wilson J (2006) Poly(vinylidene fluoride-hexafluoropropylene) (PVdF-HFP) based composite electrolytes for lithium batteries. Eur Polym J 42:1728–1734

    Article  CAS  Google Scholar 

  39. Duan G, Zhang C, Li A, Yang X, Lu L, Wang X (2008) Preparation and characterization of mesoporous zirconia made by using a poly (methyl methacrylate) template. Nanoscale Res Lett 3:118–122

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Masoud EM, El-Bellihi A-A, Bayoumy WA, Mohamed EA (2018) Polymer composite containing nano magnesium oxide filler and lithiumtriflate salt: An efficient polymer electrolyte for lithium ion batteries application. J Mol Liq 260C:237–244

  41. Croce F, Appetecchi GB, Persi L, Scrosati B (1998) Nanocomposite polymer electrolytes for lithium batteries. Nature 394:456–458

    Article  CAS  Google Scholar 

  42. Latif F, Aziz M, Katun N, Yahya MZ (2006) The role and impact of rubber in poly(methyl methacrylate)/lithium triflate electrolyte. J Power Sources 159:1401–1404

    Article  CAS  Google Scholar 

  43. Mohamad AA, Mohamed NS, Yahya MZ, Othman R, Ramesh S, Alias Y, Arof AK (2003) Ionic conductivity studies of poly(vinyl alcohol) alkaline solid polymer electrolyte and its use in nickel–zinc cells. Solid State Ionics 177:156–171

  44. Arya A, Sharma AL (2018) Optimization of salt concentration and explanation of two peak percolation in blend solid polymer nanocomposite films. J Solid State Electrochem Electrochem 22:2725–2745

  45. Chodari BVR, Wang W (eds) (2000) Solid state ionics: materials and devices. World Scientific, Singapore

    Google Scholar 

  46. Hu L, Tang Z, Zhang Z (2007) New composite polymer electrolyte comprising mesoporous lithium aluminate nanosheets and PEO/LiClO4. J Power Sources 166:226–232

    Article  CAS  Google Scholar 

  47. Anderson S, Bohon RL, Kimpton DD (1955) Infrared spectra and atomic arrangement in fused boron oxide and soda borate glasses. J Am Ceram Soc 38:370–377

    Article  CAS  Google Scholar 

  48. Ren S, Chen Z, Yan T, Han F, Kuang X, Liang F, Liu L (2018) High temperature dielectrics and defect characteristic of (Nb, Mn, Zr) modified 0.4(Ba0.8Ca0.2)TiO3 – 0.6Bi(Mg0.5Ti0.5)O3 ceramics. J Phys Chem Solids 118:99–108

  49. Han F, Ren S, Deng J, Yan T, Ma X, Peng B, Liu L (2017) Dielectric response mechanism and suppressing high-frequency dielectric loss in Y2O3 grafted CaCu3Ti4O12 ceramics. J Mater Sci Mater Electron 28:17378–17387

  50. Deng J, Liu L, Sun X, Liu S, Yan T, Fang L, Elouadi B (2017) Dielectric relaxation behavior and mechanism of Y 2/3 Cu 3 Ti 4 O 12 ceramic. Mater Res Bull 88:320–329

    Article  CAS  Google Scholar 

  51. Han F, Deng J, Liu X, Yan T, Ren S, Ma X, Liu S, Peng B, Liu L (2017) High-temperature dielectric and relaxation behavior of Yb-doped Bi0.5Na0.5TiO3 ceramics. Ceram Int 43:5564–5573

  52. Sun X, Deng J, Liu S, Yan T, Peng B, Jia W, Mei Z, Hongbo S, Fang L, Liu L (2016) Grain boundary defect compensation in Ti-doped BaFe0.5Nb0.5O3 ceramics. Appl Phys A 122(864):1–8

  53. Liu S, Sun X, Peng B, Su H, Mei Z, Huang Y, Deng J, Su C, Fang L, Liu L (2016) Dielectric properties and defect mechanisms of (1-x)Ba(Fe0.5Nb0.5)O3 -xBiYbO3 ceramics. J Electroceram 37:137–144

    Article  CAS  Google Scholar 

  54. Masoud EM, El-Bellihi A-A, Bayoumy WA, Mousa MA (2013) Effect of LiAlO2 nanoparticle filler concentration on the electrical properties of PEO–LiClO4 composite. Mater Res Bull 48(3):1148–1154

    Article  CAS  Google Scholar 

  55. ElBellihi AA, Bayoumy WA, Masoud EM, Mousa MA (2012) Preparation, Characterizations and Conductivity of Composite Polymer Electrolytes Based on PEO-LiClO4 and Nano ZnO Filler. Bull Korean Soc 33(9):2949–2954

  56. Masoud EM, Khairy M, Mousa MA (2013) Electrical properties of fast ion conducting silver based borate glasses: application in solid battery. Alloys Compd 569:150–155

    Article  CAS  Google Scholar 

  57. Masoud EM, Mousa MA (2015) Silver-doped silver vanadate glass composite electrolyte: structure and an investigation of electrical properties. Ionics 21:1095–1103

  58. Masoud EM (2015) Citrated porous gel copolymer electrolyte composite for lithium ion batteries application: An investigation of ionic conduction in an optimized crystalline and porous structure. Alloys and compounds 651:157–163

  59. Prasad Rao R, Reddy MV, Adams S, Chowdari BVR (2012) Preparation and mobile ion transport studies of Ta and Nb doped Li6Zr2O7 Li-fast ion conductors. Mater Sci Eng B 177:100–105

  60. Reddy MV, Adams S (2017) Molten salt synthesis and characterization of fast ion conductor Li6.75La3Zr1.75Ta0.25O12. J Solid State Electrochem 21:2921–2928

  61. Shastry MCR, Rao KJ (1991) ac conductivity and dielectric relaxation studies in AgI-based fast ion conducting glasses. Solid State Ionics 44:187–198

    Article  CAS  Google Scholar 

  62. Suthanthiraraj SA, Sheeba DJ, Paul BJ (2009) Impact of ethylene carbonate on ion transport characteristics of PVdF–AgCF3SO3 polymer electrolyte system. Mater Res Bull 44:1534–1539

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The author (Emad M. Masoud) of this research paper would like to thank the science and technology development fund (STDF), Egypt, (http://www.stdf.org.eg/index.php/en/) for the financial support of this scientific research work through Short –Term Fellowship (STF) Project (Project ID: 23173).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emad M. Masoud.

Additional information

Highlights

• High and low MMT contents incorporated PMMA matrix containing LTF salt were investigated and studied.

• Different structures and properties were observed in the presence of MMT content.

• The low MMT content (5 wt% montmorillonite) within the PMMA matrix showed the best suitable matrix for the lithium-ion diffusion.

• The same sample showed the highest conductivity value, with a big difference to the others.

• Good thermal and electrochemical stability behavior was also observed.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Masoud, E.M. Montmorillonite incorporated polymethylmethacrylate matrix containing lithium trifluoromethanesulphonate (LTF) salt: thermally stable polymer nanocomposite electrolyte for lithium-ion batteries application. Ionics 25, 2645–2656 (2019). https://doi.org/10.1007/s11581-018-2802-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-018-2802-1

Keywords

Navigation