Skip to main content
Log in

Lithium titanate nanotubes as active fillers for lithium-ion polyacrylonitrile solid polymer electrolytes

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

We report the effect of lithium titanate nanotubes (LiTNT) as active fillers for lithium-ion solid polymer electrolytes for lithium batteries. The interaction of LiTNT with polyacrylonitrile host material and enhancement on lithium perchlorate ionic-pair dissociation was clearly evidenced by our vibrational spectroscopy and confocal Raman microscopy studies. In strong correlation with the structural characterization, the active role of LiTNT fillers was evidenced by means of impedance spectroscopy analysis revealing the presence of two contributions to the ionic transport, one due to the bulk and the other possibly mediated by the LiTNT surface in the nanocomposites. A four-order-magnitude enhancement on the lithium-ion bulk conductivity was observed for 15% LiTNT loadings with respect to unloaded samples showing an increment up to ~ 7.1 × 10−4 S.cm−1. In addition, we also evidence that the LiTNT surface-mediated contribution to the lithium-ion transport yielded conductivities in the same order of magnitude.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Chilaka N, Ghosh S (2014) Dielectric studies of poly (ethylene glycol)-polyurethane/poly (methylmethacrylate)/montmorillonite composite. Electrochim Acta 134:232–241

    Article  CAS  Google Scholar 

  2. Kumar Y, Hashmi S, Pandey G (2011) Ionic liquid mediated magnesium ion conduction in poly (ethylene oxide) based polymer electrolyte. Electrochim Acta 56(11):3864–3873

    Article  CAS  Google Scholar 

  3. Ostrovskii D, Jacobsson P (2001) Concentrational changes in PAN-based polymer gel electrolyte under current flow: in situ micro-Raman investigation. J Power Sources 97:667–670

    Article  Google Scholar 

  4. Sengwa R, Choudhary S (2014) Dielectric properties and fluctuating relaxation processes of poly (methyl methacrylate) based polymeric nanocomposite electrolytes. J Phys Chem Solids 75(6):765–774

    Article  CAS  Google Scholar 

  5. Ulaganathan M, Mathew CM, Rajendran S (2013) Highly porous lithium-ion conducting solvent-free poly (vinylidene fluoride-co-hexafluoropropylene)/poly (ethyl methacrylate) based polymer blend electrolytes for Li battery applications. Electrochim Acta 93:230–235

    Article  CAS  Google Scholar 

  6. Shekibi Y, Rüther T, Huang J, Hollenkamp AF (2012) Realisation of an all solid state lithium battery using solid high temperature plastic crystal electrolytes exhibiting liquid like conductivity. Phys Chem Chem Phys 14(13):4597–4604

    Article  CAS  PubMed  Google Scholar 

  7. Bandara L, Dissanayake M, Mellander B-E (1998) Ionic conductivity of plasticized (PEO)-LiCF3SO3 electrolytes. Electrochim Acta 43(10–11):1447–1451

    Article  CAS  Google Scholar 

  8. Romero M, Faccio R, Mombrú ÁW (2016) Novel fluorine-free 2, 2′-bis (4, 5-dimethylimidazole) additive for lithium-ion poly (methyl methacrylate) solid polymer electrolytes. RSC Adv 6(71):67150–67156

    Article  CAS  Google Scholar 

  9. Scheers J, Lim D-H, Kim J-K, Paillard E, Henderson WA, Johansson P, Ahn J-H, Jacobsson P (2014) All fluorine-free lithium battery electrolytes. J Power Sources 251:451–458

    Article  CAS  Google Scholar 

  10. Wieczorek W, Zalewska A, Raducha D, Florjańczyk Z, Stevens J (1998) Composite polyether electrolytes with Lewis acid type additives. J Phys Chem B 102(2):352–360

    Article  CAS  Google Scholar 

  11. Shin J, Passerini S (2004) PEO LiN (SO 2 CF 2 CF 3) 2 polymer electrolytes v. effect of fillers on ionic transport properties. J Electrochem Soc 151(2):A238–A245

    Article  CAS  Google Scholar 

  12. Scrosati B, Croce F, Persi L (2000) Impedance spectroscopy study of PEO-based nanocomposite polymer electrolytes. J Electrochem Soc 147(5):1718–1721

    Article  CAS  Google Scholar 

  13. Croce F, Curini R, Martinelli A, Persi L, Ronci F, Scrosati B, Caminiti R (1999) Physical and chemical properties of nanocomposite polymer electrolytes. J Phys Chem B 103(48):10632–10638

    Article  CAS  Google Scholar 

  14. Panero S, Scrosati B, Greenbaum S (1992) Ionic conductivity and 7Li NMR study of poly (ethylene glycol) complexed with lithium salts. Electrochim Acta 37(9):1533–1539

    Article  CAS  Google Scholar 

  15. Kumar B, Scanlon LG (1994) Polymer-ceramic composite electrolytes. J Power Sources 52(2):261–268

    Article  CAS  Google Scholar 

  16. Romero M, Faccio R, Vázquez S, Mombrú ÁW (2016) Enhancement of lithium conductivity and evidence of lithium dissociation for LLTO-PMMA nanocomposite electrolyte. Mater Lett 172:1–5

    Article  CAS  Google Scholar 

  17. Liu W, Liu N, Sun J, Hsu P-C, Li Y, Lee H-W, Cui Y (2015) Ionic conductivity enhancement of polymer electrolytes with ceramic nanowire fillers. Nano Lett 15(4):2740–2745

    Article  CAS  PubMed  Google Scholar 

  18. Zheng J, Tang M, Hu YY (2016) Lithium ion pathway within Li7La3Zr2O12-polyethylene oxide composite electrolytes. Angew Chem Int Ed 55(40):12538–12542

    Article  CAS  Google Scholar 

  19. Yang T, Zheng J, Cheng Q, Hu Y-Y, Chan CK (2017) Composite polymer electrolytes with Li7La3Zr2O12 garnet-type nanowires as ceramic fillers: mechanism of conductivity enhancement and role of doping and morphology. ACS Appl Mater Interfaces 9(26):21773–21780

    Article  CAS  PubMed  Google Scholar 

  20. Pignanelli F, Romero M, Faccio R, Fernández-Werner L, Mombrú AW (2018) Enhancement of lithium-ion transport in poly (acrylonitrile) with hydrogen titanate nanotube fillers as solid polymer electrolytes for lithium-ion battery applications. J Phys Chem C 122(3):1492–1499

    Article  CAS  Google Scholar 

  21. Sun X, Li Y (2003) Synthesis and characterization of ion-exchangeable titanate nanotubes. Chem Eur J 9(10):2229–2238

    Article  CAS  PubMed  Google Scholar 

  22. Sauvet A-L, Baliteau S, Lopez C, Fabry P (2004) Synthesis and characterization of sodium titanates Na2Ti3O7 and Na2Ti6O13. J Solid State Chem 177(12):4508–4515

    Article  CAS  Google Scholar 

  23. Fernández-Werner L, Pignanelli F, Montenegro B, Romero M, Pardo H, Faccio R, Mombrú ÁW (2017) Characterization of titanate nanotubes for energy applications. J Energy Storage 12:66–77

    Article  Google Scholar 

  24. Sugita M, Tsuji M, Abe M (1990) Synthetic inorganic ion-exchange materials. LVIII. Hydrothermal synthesis of a new layered lithium titanate and its alkali ion exchange. Bull Chem Soc Jpn 63(7):1978–1984

    Article  CAS  Google Scholar 

  25. Bashir Z (1994) Co-crystallization of solvents with polymers: the x-ray diffraction behavior of solvent-containing and solvent-free polyacrylonitrile. J Polym Sci B Polym Phys 32(6):1115–1128

    Article  CAS  Google Scholar 

  26. Xue TJ, McKinney MA, Wilkie CA (1997) The thermal degradation of polyacrylonitrile. Polym Degrad Stab 58(1–2):193–202

    Article  CAS  Google Scholar 

  27. Wu Q-Y, Chen X-N, Wan L-S, Xu Z-K (2012) Interactions between polyacrylonitrile and solvents: density functional theory study and two-dimensional infrared correlation analysis. J Phys Chem B 116(28):8321–8330

    Article  CAS  PubMed  Google Scholar 

  28. Wang Z, Huang B, Huang H, Chen L, Xue R, Wang F (1996) Investigation of the position of Li+ ions in a polyacrylonitrile-based electrolyte by Raman and infrared spectroscopy. Electrochim Acta 41(9):1443–1446

    Article  CAS  Google Scholar 

  29. Wang Z, Huang B, Wang S, Xue R, Huang X, Chen L (1997) Vibrational spectroscopic study of the interaction between lithium perchlorate and dimethylsulfoxide. Electrochim Acta 42(17):2611–2617

    Article  CAS  Google Scholar 

  30. Kasuga T, Hiramatsu M, Hoson A, Sekino T, Niihara K (1999) Titania nanotubes prepared by chemical processing. Adv Mater 11(15):1307–1311

    Article  CAS  Google Scholar 

  31. Pignanelli F, Romero M, Faccio R, Mombrú ÁW (2017) Experimental and theoretical study of ionic pair dissociation in a lithium ion–linear polyethylenimine–polyacrylonitrile blend for solid polymer electrolytes. J Phys Chem B 121(27):6759–6765. https://doi.org/10.1021/acs.jpcb.7b04634

    Article  CAS  PubMed  Google Scholar 

  32. Irvine JTS, Sinclair DC, West AR (1990) Electroceramics: characterization by impedance spectroscopy. Adv Mater 2(3):132–138

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank the Uruguayan CSIC, ANII, and PEDECIBA funding institutions. We would like to thank Alvaro Olivera for the technical support and the collaboration of Laura Fornaro at GDMEA-CURE high-resolution transmission electron microscopy laboratory.

Funding

We also are thankful for financial support of EQC-X-2012-1-14 ANII.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mariano Romero or Ricardo Faccio.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pignanelli, F., Romero, M., Esteves, M. et al. Lithium titanate nanotubes as active fillers for lithium-ion polyacrylonitrile solid polymer electrolytes. Ionics 25, 2607–2614 (2019). https://doi.org/10.1007/s11581-018-2768-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-018-2768-z

Keywords

Navigation