Skip to main content
Log in

Synthesis and electrochemical properties of Mg-doped and Al-doped LiMnPO4·Li3V2(PO4)3/C cathode materials for lithium-ion batteries

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

In this paper, LiMn1−xMgxPO4·Li3V2(PO4)3/C (x = 0, 0.01, 0.02, 0.03, 0.04, 0.05, 0.06, 0.07, 0.10) and LiMnPO4·Li3V2−yAly(PO4)3/C (y = 0.01, 0.02, 0.03, 0.05, 0.07, 0.10) composite cathode materials for lithium-ion batteries were successfully synthesized by a simple sol-gel method and modified by Mg2+ doped and Al3+ doped. The effects of Mg2+ and Al3+ doping on the microstructure and electrochemical properties of LiMnPO4·Li3V2(PO4)3/C were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), EDAS energy spectrum analysis (EDS), constant current charge/discharge electrical test, cyclic voltammetry, and electrochemical impedance spectroscopy (EIS). The analysis shows that the electrochemical properties of samples have been greatly improved. The results show that when x = 0.06 and y = 0.02, the material has the best electrochemical performance. Under the voltage range of 2.5–4.5 V, the initial discharge specific capacity at 0.1 C (1 C = 143 mAh g−1) is as high as 148.2 mAh g−1 and 134.4 mAh g−1, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Wang G, Liu H, Liu J, Qiao S, Lu GM, Munroe P, Ahn H (2010) Mesoporous LiFePO4/C nanocomposite cathode materials for high power lithium ion batteries with superior performance. Adv Mater 22:4944–4948

    Article  CAS  PubMed  Google Scholar 

  2. Muldoon J, Bucur CB, Gregory T (2014) Quest for nonaqueous multivalent secondary batteries: magnesium and beyond. Chem Rev 114(23):11683–11720

    Article  CAS  PubMed  Google Scholar 

  3. Goodenough JB, Park K (2013) The li-ion rechargeable battery: a perspective. J Am Chem Soc 135:1167–1176

    Article  CAS  PubMed  Google Scholar 

  4. Zhao K, Liu F, Niu C, Xu W, Dong Y, Zhang L, Xie S, Yan M, Wei Q, Zaho D, Mai L (2015) Graphene oxide wrapped amorphous copper vanadium oxide with enhanced capacitive behavior for high-rate and long-life lithium-ion battery anodes. Adv Sci 2:150–154

    Google Scholar 

  5. Liu H, Yang G, Zhang X, Gao P, Wang L, Fang J, Pintoc J, Jiang X (2012) Kinetics of conventional carbon coated-Li3V2(PO4)3 and nanocomposite Li3V2(PO4)3/graphene as cathode materials for lithium ion batteries. J Mater Chem 22:11–39

    Google Scholar 

  6. Lee S, Park SS (2012) Atomistic simulation study of monoclinic Li3V2(PO4)3 as a cathode material for lithium ion battery: structure, defect chemistry, lithium ion transport pathway, and dynamics. J Phys Chem C 116:25190–25197

    Article  CAS  Google Scholar 

  7. Zhao Y, Peng L, Liu B, Yu G (2014) Single-crystalline LiFePO4 nanosheets for high rate Li-Ion batteries. Nano Lett 14:2849–2853

    Article  CAS  PubMed  Google Scholar 

  8. Delacourt C, Laffont L, Bouchet R, Wurm C, Leriche J-B, Morcrette M, Tarascon J-M, Masquelier C (2005) Toward understanding of electrical limitations (electronic, ionic) in LiMPO4 (M = Fe, Mn) electrode materials. J Electrochem Soc 152:A913

    Article  CAS  Google Scholar 

  9. Li GH, Azuma H, Tohda M (2002) LiMnPO[sub 4] as the cathode for lithium batteries. Electrochem Solid-State Lett 5:A135

    Article  CAS  Google Scholar 

  10. Liu J, Banis MN, Sun Q, Lushington A, Li R, Sham TK, Sun X (2014) Rational design of atomic-layer-deposited LiFePO4 as a high-performance cathode for lithium-ion batteries. Adv Mater 26:6472–6477

    Article  CAS  PubMed  Google Scholar 

  11. Qiao YQ, Tu JP, Wang XL, Gu CD (2012) The low and high temperature electrochemical performances of Li3V2(PO4)3 cathode material for Li-ion batteries. J Power Sources 199:287–292

    Article  CAS  Google Scholar 

  12. Zhang R, Zhang Y, Zhu K, Du F, Fu Q, Yang X, Wang Y, Bie X, Chen G, Wei Y (2014) Carbon and RuO2 binary surface coating for the Li3V2(PO4)3 cathode material for lithium-ion batteries. ACS Appl Mater Interfaces 6:12523–12530

    Article  CAS  PubMed  Google Scholar 

  13. Saïdi MY, Barker J, Huang H, Swoyer JL, Adamson G (2003) Symmetric Electrodes for Electrochemical Energy-Storage Devices. J Power Sources 266:119–121

    Google Scholar 

  14. Naoi K, Kisu K, Iwama E, Sato Y, Shinoda M, Okita N, Naoi W (2015) Ultrafast cathode characteristics of nanocrystalline-Li3V2(PO4)3/carbon nanofiber composites. J Electrochem Soc 162:A827–A833

    Article  CAS  Google Scholar 

  15. Zhang X, Böckenfeld N, Berkemeier F, Balducci A (2014) Ionic-liquid-assisted synthesis of nanostructured and carbon-coated Li3V2(PO4)3 for high-power electrochemical storage devices. ChemSusChem 7:1710–1718

    Article  CAS  PubMed  Google Scholar 

  16. Secchiaroli M, Giuli G, Fuchs B, Marassi R, Wohlfahrt-Mehrens M, Dsoke S (2015) High rate capability Li3V2-xNix(PO4)3/C (x =0, 0.05, and 0.1) cathodes for Li-ion asymmetric supercapacitors. J Mater Chem A 3:11807–11816

    Article  CAS  Google Scholar 

  17. Secchiaroli M, Nobili F, Tossici R, Giuli G, Marassi R (2015) Synthesis and electrochemical characterization of high rate capability Li3V2(PO4)3 prepared by using poly (acrylic acid) and D-(+)-glucose as carbon sources. J Power Sources 275:792–798

    Article  Google Scholar 

  18. Dang J, Xiang F, Gu N, Zhang R, Mukherjee R, Oh IK, Koratkar N, Yang Z (2013) Synthesis and electrochemical performance characterization of Ce-doped Li3V2(PO4)3/C as cathode materials for lithium-ion batteries. J Power Sources 243:33–39

    Article  CAS  Google Scholar 

  19. Chen Y, Zhang D, Bian X, Bie X, Wang C, Du F, Jang M, Chen G, Wei Y (2012) Characterizations of the electrode/electrolyte interfacial properties of carbon coated Li3V2(PO4)3 cathode material in LiPF6 based electrolyte. Electrochim Acta 79:95–101

    Article  CAS  Google Scholar 

  20. Zhang LL, Liang G, Peng G, Zou F, Huang YH, Croft MC, Ignatov A (2012) Significantly improved electrochemical performance in Li3V2(PO4)3/C promoted by SiO2 coating for lithium-ion batteries. J Phys Chem C 116:12401–12408

    Article  CAS  Google Scholar 

  21. Liu LY, Lei XL, Tang H, Zeng RR, Chen YM, Zhang HY (2015) Influence of La doping on magnetic and electrochemical properties of Li3V2(PO4)3/C cathode materials for lithium-ion batteries. Electrochim Acta 151:378–385

    Article  CAS  Google Scholar 

  22. Wang L, Li Z, Xu H, Zhang K (2008) Studies of Li3V2(PO4)3 additives for the LiFePO4-based Li ion batteries. J Phys Chem C 112:308–312

    Article  CAS  Google Scholar 

  23. Yang M-R, Ke W, Wu S (2007) Improving electrochemical properties of lithium iron phosphate by addition of vanadium. J Power Sources 165:646–650

    Article  CAS  Google Scholar 

  24. Zheng J, Zhang B, Yang Z, Ou X (2013) Studies of composite cathode material LiFePO4·Li3V2(PO4)3 and it’s precursor FeVO4·xH2O. Bull Chem Soc Jpn 86:376–381

    Article  CAS  Google Scholar 

  25. Jo J, Gim J, Song J (2017) One-pot pyro-synthesis of a high energy density LiFePO4–Li3V2(PO4)3 nanocomposite cathode for lithium-ion battery applications. Ceram Int 43:4288–4294

    Article  CAS  Google Scholar 

  26. Guo XD, Zhong BH, Liu H, Song Y, Wen JJ, Tang Y (2011) Electrochemical performance of LiFePO4–Li3V2(PO4)3 composite material prepared by solid-hydrothermal method. Trans Nonferrous Metals Soc China 21:1761–1766

    Article  CAS  Google Scholar 

  27. Xiang JY, Tu JP, Zhang L, Wang XL, Zhou Y, Qiao YQ, Lu Y (2010) Improved electrochemical performances of 9LiFePO4–Li3V2(PO4)3 composite prepared by a simple solid-state method. J Power Sources 195:8331–8335

    Article  CAS  Google Scholar 

  28. Zheng J-C, Li X-H, Wang Z-X et al (2009) Characteristics of xLiFePO4·yLi3V2(PO4)3 electrodes for lithium batteries. Ionics (Kiel) 15(6):753–759

    Article  CAS  Google Scholar 

  29. Bini M, Ferrari S, Capsoni D, Massarotti V (2011) Mn influence on the electrochemical behaviour of Li3V2(PO4)3 cathode material. Electrochim Acta 56:2648–2655

    Article  CAS  Google Scholar 

  30. Luo YZ, Xu X, Zhang YX, Pi YQ, Yan MY, Wei QL, Tian XC, Mai LQ (2015) Three-dimensional LiMnPO4∙Li3V2(PO4)3/C nanocomposite as a bicontinuous cathode for high-rate and long-life lithium-ion batteries. Appl Mater Interfaces 7:17527–17534

    Article  CAS  Google Scholar 

  31. Zhai J, Zhao M, WANG D (2011) Effect of Mn-doping on performance of Li3V2(PO4)3/C cathode material for lithium ion batteries. Trans Nonferrous Metals Soc China 21:523

    Article  CAS  Google Scholar 

  32. Yang G, Ni H, Liu H, Gao P, Ji H, Roy S, Pinto J, Jiang X (2011) The doping effect on the crystal structure and electrochemical properties of LiMnxM1−xPO4 (M=Mg, V, Fe, Co, Gd). J Power Sources 196:4747–4755

    Article  CAS  Google Scholar 

  33. Wang F, Yang J, NuLi YN, Wang JL (2013) Composites of LiMnPO4 with Li3V2(PO4)3 for cathode in lithium-ion battery. Electrochim Acta 103:96–102

    Article  CAS  Google Scholar 

  34. Qin LF, Xia YG, Qiu B, Cao HL, Liu Y, Liu ZP (2013) Synthesis and electrochemical performances of (1-x)LiMnPO4∙xLi3V2(PO4)3/C composite cathode materials for lithium ion batteries. J Power Sources 239:144–150

    Article  CAS  Google Scholar 

  35. Li SS, Su Z, Wang XY (2015) High performance (1-x)LiMnPO4∙xLi3V2(PO4)3/C composite cathode materials prepared by a sol-gel method. RSC Adv 5:80170–80175

    Article  CAS  Google Scholar 

  36. Zhang B, Wang XW, Zhang JF (2014) Novel synthesis of LiMnPO4∙Li3V2(PO4)3/C composite cathode material. RSC Adv 4:49123–49127

    Article  CAS  Google Scholar 

  37. Bakenov Z, Tanigu chi I (2010) LiMgxMn1-xPO4/C cathodes for lithium batteries prepared by a combination of spray pyrolysis with wet ballmilling. J Electrochem Soc 157:A430–A436

    Article  CAS  Google Scholar 

  38. Barker J, Gover RKB, Burns P, Bryan A (2007) The effect of Al substitution on the electrochemical insertion properties of the lithium vanadium phosphate. J Electrochem Soc 154(4):A307–A313

    Article  CAS  Google Scholar 

  39. Shiratsu chi T, Okada S, Doi T (2009) Cathodic performance of LiMn1-xMxPO4 (M = Ti, Mg and Zr) annealed in an inert atmosphere. Electrochem Acta 54:3145–3151

    Article  CAS  Google Scholar 

  40. Son JN, Kim GJ, Kim MC, Kim SH, Aravindan V, Lee YG, Lee YS (2013) Carbon coated NASICON type Li3V2-xMx(PO4)3(M = Mn, Fe and Al) materials with enhanced cyclability for Li-Ion batteries. J Electrochem Soc 160:A87–A92

    Article  CAS  Google Scholar 

  41. Deng C, Zhang S, Yang Y, Gao Y, Wu B, Ma L, Fu BL, Wu Q, Liu FL (2011) J Phys Chem 115:15048–15056

    Article  CAS  Google Scholar 

  42. Ai DJ, Liu KY, Lu ZG, Zou MM, Zeng DQ, Mu J (2011) Aluminothermal synthesis and characterization of Li3V2-xAlx(PO4)3 cathode materials for lithium ion batteries. Electrochemical Acta 56:2823–2827

    Article  CAS  Google Scholar 

  43. Cho AR, Son JN, Aravindan V, Kim H, Kang KS, Yoon WS, Kim WS, Lee YS (2012) Carbon supported, Al doped- Li3V2(PO4)3 as a high rate cathode material for lithium-ion batteries. J Mater Chem 22:6556

    Article  CAS  Google Scholar 

  44. Lei ZH, Yang J, He Y (2017) LiMnPO4 center dot Li3V2(PO4)3 composite cathode material derived from Mn(VO3)2 nanosheet precursor. J Alloys Compd 695:1813–1820

    Article  CAS  Google Scholar 

  45. Wang CY, Bi YJ, Liu Y et al (2014) Investigation of (1-x)LiMnPO4∙xLi3V2(PO4)3/C: phase composition and electrochemical performance. J Power Sources 263:332–337

    Article  CAS  Google Scholar 

  46. Zhang JF, Wang XW, Zhang B (2015) Multicore-shell carbon-coated lithium manganese phosphate and lithium vanadium phosphate composite material with high capacity and cycling performance for lithium-ion battery. Electrochim Acta 169:462–469

    Article  CAS  Google Scholar 

  47. Bi YJ, Yang WC, Yang BC (2014) Influence of Li3V2(PO4)3 complexing on the performance of LiMnPO4 based materials utilized in lithium ion battery. Ceram Int 40:7637–7641

    Article  CAS  Google Scholar 

  48. Yang G, Ni H, Liu HD, Gao P, Jia HM, Roy S, Pinto J, Jiang E (2011) The doping effect on the crystal structure and electrochemical properties of LiMnxM1-xPO4 (M=Mg, V, Fe, Co, Gd). J Power Sources 196:4747–4755

    Article  CAS  Google Scholar 

  49. Deng C, Zhang S, Yang SY, Gao Y, Wu B, Ma L, Fu BL, Wu Q, Liu FL (2011) Effects of Ti and Mg co-doping on the electrochemical performance of Li3V2(PO4)3 cathode material for lithium ion batteries. J Phys Chem C 115:15048–15056

    Article  CAS  Google Scholar 

  50. Chen J (2013) Recent progress in advanced materials for lithium ion batteries. Materials 6(1):156–183

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Enshan Han.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dou, L., Han, E., Li, L. et al. Synthesis and electrochemical properties of Mg-doped and Al-doped LiMnPO4·Li3V2(PO4)3/C cathode materials for lithium-ion batteries. Ionics 25, 2487–2499 (2019). https://doi.org/10.1007/s11581-018-2748-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-018-2748-3

Keywords

Navigation