Skip to main content
Log in

Ionic switch using nano-channels in polymeric membrane

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

A synthetic ion-transporting structure has been created using irradiated etched polymeric membrane to mimic natural systems like neurons. Considering the challenges involving the complexity in ion selectivity and opening/closing of channels in non-natural systems, efficient sodium and potassium ions’ transport through ion channels using voltage-gated channels is being presented. Cation selective nature, well-defined geometries, easy modification, and compatibility with different electronic and optical measurement techniques are some of the reasons which make ion channels in polyethylene terephthalate membrane the most appropriate choice for such channels. The applied voltage stimulus facilitates the transport of ions of the aqueous electrolytes and provides the direction to their flow. These ion channels in polymeric membranes behave as potassium ion channels in a particular applied voltage range and as sodium ion channels, in another voltage range. With applied voltage, these channels switch between high and low conduction states referred to as opening and closing. The opening time is referred to as the “event time” for the transportation of ions through ion channels. Event time for potassium and sodium channels varies with the applied voltage. Statistical interaction of ion channels affects the event time (opening/closing) of the ion channels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Cooper MG, Hausman ER (2000) The cell—a molecular approach. Sinauer associates, Sunderland

    Google Scholar 

  2. Hille B (2001) Ion channels of excitable membranes. Sinauer associates, Sunderland

    Google Scholar 

  3. Ashcroft ME (1999) Ion channel and disease. Academic press, New York

    Google Scholar 

  4. Li J, Stein D, McMullan C, Branton D, Aziz MJ, Golovchenko JA (2001) Ion-beam sculpting at nanometre length scales. Nature 412:166–169

    Article  CAS  PubMed  Google Scholar 

  5. Heng JB, Ho C, Kim T, Timp R, Aksimentiev A, Grinkova YV, Sligar S, Schulten K, Timp G (2004) Sizing DNA using a nanometer-diameter pore. Biophys J 87:2905–2911

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Haque F, Li J, Wu HC, Liang JX, Peixuan G (2013) Solid state and biological nanopore for real-time sensing of single chemical and sequencing of DNA. Nano Today 8:56–74

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Wei R, Pedone D, Zürner A, Döblinger M, Rant U (2010) Nanopores: fabrication of metallized nanopores in silicon nitride membranes for single-molecule sensing. Small 6:1406–1414

    Article  CAS  PubMed  Google Scholar 

  8. Kowalczyk SW, Blosser TR, Dekker C (2011) Biomimetic nanopores: learning from and about nature. Trends Biotechnol 29:607–614

    Article  CAS  PubMed  Google Scholar 

  9. Krapf D, Wu MY, Smeets RM, Zandbergen HW, Dekker C, Lemay SG (2006) Fabrication and characterization of nanopore-based electrodes with radii down to 2 nm. Nano Lett 6:105–109

    Article  CAS  PubMed  Google Scholar 

  10. Hall AR, Scott A, Rotem D, Mehta KK, Bayley H, Dekker C (2010) Hybrid pore formation by directed insertion of alpha hemolysin into solid-state nanopores. Nat Nanotechnol 5(12):874–877

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Storm AJ, Storm C, Chen J, Zandbergen H, Joanny JF, Dekker C (2005) Fast DNA translocation through a solid-state nanopore. Nano Lett 5:1193–1197

    Article  CAS  PubMed  Google Scholar 

  12. Rawat S, Fink D, Chandra A (2010) Study of ferrofluids in confined geometry. J Colloid Interface Sci 350:51–57

    Article  CAS  PubMed  Google Scholar 

  13. Rawat S, Chandra A (2010) Study of surface morphology of ferrofluid deposited etched ion tracks in dielectric layers. Radiat Meas 45:844–849

    Article  CAS  Google Scholar 

  14. Rawat S, Chandra A (2011) I–V behavior of transition metal oxides nanoparticles confined in ion tracks. J Nanopart Res 13:5265–5273

    Article  CAS  Google Scholar 

  15. Storm AJ, Chen JH, Ling XS, Zandergen HW, Dekker C (2003) Fabrication of solid-state nanopores with single-nanometre precision. Nat Mater 2:537–540

    Article  CAS  PubMed  Google Scholar 

  16. Park SR, Peng HB, Ling XS (2007) Fabrication of nanopores in silicon chips using feedback chemical etching. Small 3:116–119

    Article  CAS  PubMed  Google Scholar 

  17. Reber N, Küchel A, Spohr R, Wolf A, Yoshida M (2001) Transport properties of thermo-responsive ion track membranes. J Membr Sci 193:49–51

    Article  CAS  Google Scholar 

  18. Innes L, Powell RM, Vlassiouk I, Martens C, Siwy SZ (2010) Precipitation-induced voltage-dependent ion current fluctuations in conical nanopores. J Phys Chem C 114:8126–8134

    Article  CAS  Google Scholar 

  19. Spohr R (1983) Methods and device to generate a predetermined number of ion tracks. German Patent DE 2951376 C2, U S Patent. No. 4369370

  20. Rawat S, Saha B, Prasad A, Chandra A (2012) Chaotic behavior of ion exchange phenomena in polymer gel electrolytes through irradiated polymeric membrane. Phys Lett A 376:1915–1918

    Article  CAS  Google Scholar 

  21. Eguizábal A, Sgroi M, Pullini D, Ferain E, Pina PM (2014) Nanoporous PBI membranes by track etching for high temperature PEMs. J Membr Sci 454:243–252

    Article  CAS  Google Scholar 

  22. Fink D (2013) Fundamentals of ion irradiated polymers. Springer series in Material Science, Germany.

    Google Scholar 

  23. Gamble T, Decker K, Plett ST, Pevarnik M, Pietschmann FJ, Vlassiouk I, Aksimentiev A, Siwy SZ (2014) Rectification of ion current in nanopores depends on the type of monovalent cations: experiments and modeling. J Phys Chem C 118:9809–9819

    Article  CAS  Google Scholar 

  24. Gamby J, Delapierre DF, Pallandre A, Tribollet B, Deslouis C, Haghiri GMA (2016) Dielectric properties of a single nanochannel investigated by high-frequency impedance spectroscopy. Electrochem Commun 66:5–9

    Article  CAS  Google Scholar 

  25. Hylland B, Siwy SZ, Martens C (2015) Nanopore current oscillations: nonlinear dynamics on the nanoscale. J Phys Chem Lett 6:1800–1806

    Article  CAS  Google Scholar 

  26. Siwy SZ, Heins E, Harrell CC, Kohli P, Martin RC (2004) Conical-nanotube ion-current rectifiers: the role of surface charge. J Am Chem Soc 126:10850–10851

    Article  CAS  PubMed  Google Scholar 

  27. Bezrukov MS, Vodyanoy I, Parsegian AV (1994) Counting polymers moving through a single ion channel. Nature 370:279–281

    Article  CAS  PubMed  Google Scholar 

  28. Shen XY, Saboe OP, Sines TI, Erbakan M, Kumar M (2014) Biomimetic membranes: a review. J Membr Sci 454:359–381

    Article  CAS  Google Scholar 

  29. Eduardo R, Chu C, Schulten K (2010) Computational microscopy of the role of protonable surface residues in nanoprecipitation oscillations. ACS Nano 4:4463–4474

    Article  CAS  Google Scholar 

  30. Alfonta L, Bukelman O, Chandra A, Fahrner RW, Fink D, Fuks D, Golovanov V, Hnatowicz V, Hoppe K, Kiv A, Klinkovich I, Landau M, Morante JR, Tkachenko NV, Vacíke J, Valden M (2009) Strategies towards advanced ion track-based biosensors. Rad Effects and Defects in Solids 164:431–437

    Article  CAS  Google Scholar 

  31. Francisco B (2000) The voltage sensor in voltage-dependent ion channels. Physiol Rev 2:555–592

    Google Scholar 

  32. Alberts B, Johnson A, Lewis J, Raff M, Roberts K, Walter KP (2002) Ion channels and the electrical properties of membranes. Molecular Biology of the Cell, New York.

    Google Scholar 

  33. Tagliazucchi M, Szleifer I (2015) Transport mechanisms in nanopores and nanochannels: can we mimic nature? Mater Today 18:131–142

    Article  CAS  Google Scholar 

  34. Wen L, Jiang J (2014) Construction of biomimetic smart nanochannels for confined water. Nat Sci Rev 1:144–156

    Article  CAS  Google Scholar 

  35. Powell MR, Sullivan M, Vlassiouk I, Constantin D, Sudre O, Martens CC, Eisenberg SR, Siwy SZ (2008) Nanoprecipitation-assisted ion current oscillations. Nat Nanotechnol 3:51–57

    Article  CAS  PubMed  Google Scholar 

  36. Siwy SZ, Fulin A (2002) Fabrication of a synthetic nanopore ion pump. Phys Rev Lett 89:198103–1981-4

    Article  CAS  PubMed  Google Scholar 

  37. Eduardo R, Chu C, Ritz T, Siwy SZ, Schulte K (2009) Molecular control of ionic conduction in polymer nanopores. Faraday Discuss 143:47–93

    Article  CAS  Google Scholar 

  38. Gillespie D, Boda D, He Y, Apel P, Siwy SZ (2008) Synthetic nanopores as a test case for ion channel theories: the anomalous mole fraction effect without single filing. Biophys J 15:609–619

    Article  CAS  Google Scholar 

  39. Wang X, Lv P, Zou H, Li Y, Li X, Liao Y (2016) Synthesis of poly (2-aminothiazole) for selective removal of hg(ii) in aqueous solutions. Ind Eng Chem Res 55:4911–4918

    Article  CAS  Google Scholar 

  40. Wu W, Li Y, Liu J, Wang J, He Y, Davey K, Qiao ZS (2018) Molecular-level hybridization of nafion with quantum dots for highly enhanced proton conduction. Adv Mater 30:1707516 –1–7

    Article  CAS  Google Scholar 

  41. Wu W, Li Y, Chen P, Liu J, Wang J, Zhang H (2016) Constructing ionic liquid-filled proton transfer channels within nanocomposite membrane by using functionalized graphene oxide. ACS Appl Mater Interfaces 8:588–599

    Article  CAS  PubMed  Google Scholar 

  42. Fink D, Kiv A, Shunin Y, Mykytenko N, Shunina TL, Mansharipova A, Koycheva T, Muhamediev R, Gopeyenko V, Burlutskaya N, Zhukovskii Y, Bellucci S (2015) The nature of oscillations of ion currents in the ion track electronics. Computer Modelling & New Technologies 19:7–13

    CAS  Google Scholar 

  43. Lev AA, Korchev YE, Rostovtseva KT, Bashford LC, Edmonds TD, Pasternak AC (1993) Rapid switching of ion current in narrow pores: implications for biological ion channels. Proc R Soc Lond B 252:187–192

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Dr. D. Fink and the operators at the Helmholtz Centre for Materials and Energy, Berlin, for irradiation of the samples.

Funding

This study received financial support from the University of Delhi and DST (Govt. of India).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amita Chandra.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Negi, S., Chandra, A. Ionic switch using nano-channels in polymeric membrane. Ionics 25, 1123–1130 (2019). https://doi.org/10.1007/s11581-018-2618-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-018-2618-z

Keywords

Navigation