Advertisement

Ionics

pp 1–9 | Cite as

MWCNT/activated-carbon freestanding sheets: a different approach to fabricate flexible electrodes for supercapacitors

  • Rahmat Agung Susantyoko
  • Fathima Parveen
  • Ibrahim Mustafa
  • Saif Almheiri
Original Paper

Abstract

Wearable electronics require flexible supercapacitors with specially fabricated electrode materials, i.e., foldable and freestanding. Although activated carbon is the most used electrode’s active material for aqueous supercapacitors, it is a challenge to pack the particulates into flexible electrodes. Typically, polytetrafluoroethylene binder and polymeric flexible substrate are used, rendering a large amount of inactive-material. Here, we successfully fabricated multiwalled carbon nanotube/activated-carbon (MWCNT-AC) freestanding sheet via a scalable surface-engineered tape-casting technique to be used as a flexible electrode for aqueous supercapacitors. Instead of focusing on improving MWCNTs as active materials, the sheets act as a conducting matrix that binds together the activated-carbon particulates. MWCNT-AC has a specific capacitance of 135.17 Fg−1 (123.9 Fg−1 after 1000 cycles) at 1 Ag−1 from − 0.8 to 0.2 V vs. Hg/HgO (in three-electrode cell).

Graphical Abstract

Keywords

Activated carbon Buckypapers Flexible Freestanding MWCNTs 

Notes

Acknowledgments

The authors acknowledge the support of Applied NanoStructured Solutions LLC, a Lockheed Martin Company, for providing the MWCNT flakes. We thank Dr. Giovanni Palmisano for the use of the gas sorption system for specific surface area and pore analysis.

Compliance with ethical standards

Competing interests

The authors declare that they have no competing interests.

Supplementary material

11581_2018_2585_MOESM1_ESM.mp4 (24.6 mb)
Video 1 (MP4 25191 kb)

References

  1. 1.
    Li L, Wu Z, Yuan S, Zhang X-B (2014) Advances and challenges for flexible energy storage and conversion devices and systems. Energy Environ Sci 7:2101.  https://doi.org/10.1039/c4ee00318g CrossRefGoogle Scholar
  2. 2.
    Dong L, Xu C, Li Y, Huang ZH, Kang F, Yang QH, Zhao X (2016) Flexible electrodes and supercapacitors for wearable energy storage: a review by category. J Mater Chem A 4:4659–4685.  https://doi.org/10.1039/C5TA10582J CrossRefGoogle Scholar
  3. 3.
    Chen S, Zhu J, Wu X, Han Q, Wang X (2010) Graphene oxide-MnO2 nanocomposites for supercapacitors. ACS Nano 4:2822–2830.  https://doi.org/10.1021/nn901311t CrossRefGoogle Scholar
  4. 4.
    Fan Z, Yan J, Wei T, Zhi L, Ning G, Li T, Wei F (2011) Asymmetric supercapacitors based on graphene/MnO2 and activated carbon nanofiber electrodes with high power and energy density. Adv Funct Mater 21:2366–2375.  https://doi.org/10.1002/adfm.201100058 CrossRefGoogle Scholar
  5. 5.
    Kim J, Kim JH, Ariga K (2017) Redox-active polymers for energy storage nanoarchitectonics. Joule 1:739–768.  https://doi.org/10.1016/j.joule.2017.08.018 CrossRefGoogle Scholar
  6. 6.
    Kim J, Lee J-H, Lee J, Yamauchi Y, Choi CH, Kim JH (2017) Research update: hybrid energy devices combining nanogenerators and energy storage systems for self-charging capability. APL Mater 5:73804.  https://doi.org/10.1063/1.4979718 CrossRefGoogle Scholar
  7. 7.
    Kim J, Lee J, You J, Park M-S, Al Hossain MS, Yamauchi Y, Kim JH (2016) Conductive polymers for next-generation energy storage systems: recent progress and new functions. Mater Horiz 3:517–535.  https://doi.org/10.1039/C6MH00165C
  8. 8.
    Lee J-H, Kim J, Kim TY, Al Hossain MS, Kim S-W, Kim JH (2016) All-in-one energy harvesting and storage devices. J Mater Chem A 4:7983–7999.  https://doi.org/10.1039/C6TA01229A
  9. 9.
    Xu B, Wang H, Zhu Q, Sun N, Anasori B, Hu L, Wang F, Guan Y, Gogotsi Y (2018) Reduced graphene oxide as a multi-functional conductive binder for supercapacitor electrodes. Energy Storage Mater 12:128–136.  https://doi.org/10.1016/j.ensm.2017.12.006 CrossRefGoogle Scholar
  10. 10.
    Guan C, Qian X, Wang X, Cao Y, Zhang Q, Li A, Wang J (2015) Atomic layer deposition of Co3O4 on carbon nanotubes/carbon cloth for high-capacitance and ultrastable supercapacitor electrode. Nanotechnology 26:94001.  https://doi.org/10.1088/0957-4484/26/9/094001 CrossRefGoogle Scholar
  11. 11.
    Zhao J, Li Z, Zhang M, Meng A, Li Q (2016) Direct growth of ultrathin NiCo2O4/NiO nanosheets on SiC nanowires as a free-standing advanced electrode for high-performance asymmetric supercapacitors. ACS Sustain Chem Eng 4:3598–3608.  https://doi.org/10.1021/acssuschemeng.6b00697 CrossRefGoogle Scholar
  12. 12.
    Zhao J, Li Z, Zhang M, Meng A, Li Q (2016) Vertically cross-linked and porous CoNi2S4 nanosheets-decorated SiC nanowires with exceptional capacitive performance as a free-standing electrode for asymmetric supercapacitors. J Power Sources 332:355–365.  https://doi.org/10.1016/j.jpowsour.2016.09.128 CrossRefGoogle Scholar
  13. 13.
    Wang J-G, Yang Y, Huang Z-H, Kang F (2013) A high-performance asymmetric supercapacitor based on carbon and carbon-MnO2 nanofiber electrodes. Carbon 61:190–199.  https://doi.org/10.1016/j.carbon.2013.04.084 CrossRefGoogle Scholar
  14. 14.
    Jung K-H, Ferraris JP (2016) Preparation of porous carbon nanofibers derived from PBI/PLLA for supercapacitor electrodes. Nanotechnology 27:425708.  https://doi.org/10.1088/0957-4484/27/42/425708 CrossRefGoogle Scholar
  15. 15.
    Li Z, Liu J, Jiang K, Thundat T (2016) Carbonized nanocellulose sustainably boosts the performance of activated carbon in ionic liquid supercapacitors. Nano Energy 25:161–169.  https://doi.org/10.1016/j.nanoen.2016.04.036 CrossRefGoogle Scholar
  16. 16.
    Zhang LL, Zhao X, Stoller MD, Zhu Y, Ji H, Murali S, Wu Y, Perales S, Clevenger B, Ruoff RS (2012) Highly conductive and porous activated reduced graphene oxide films for high-power supercapacitor. Nano Lett 12:1806–1812.  https://doi.org/10.1021/nl203903z CrossRefGoogle Scholar
  17. 17.
    Xu G, Zheng C, Zhang Q, Huang J, Zhao M, Nie J, Wang X, Wei F (2011) Binder-free activated carbon/carbon nanotube paper electrodes for use in supercapacitors. Nano Res 4:870–881.  https://doi.org/10.1007/s12274-011-0143-8 CrossRefGoogle Scholar
  18. 18.
    Weinstein L, Dash R (2013) Supercapacitor carbons: have exotic carbons failed? Mater Today 16:356–357.  https://doi.org/10.1016/j.mattod.2013.09.005 CrossRefGoogle Scholar
  19. 19.
    Yu S, Wang H, Hu C, Zhu Q, Qiao N, Xu B (2016) Facile synthesis of nitrogen-doped, hierarchical porous carbons with a high surface area: the activation effect of a nano-ZnO template. J Mater Chem A 4:16341–16348.  https://doi.org/10.1039/C6TA07047G CrossRefGoogle Scholar
  20. 20.
    Jurewicz K, Babeł K, Pietrzak R, Delpeux S, Wachowska H (2006) Capacitance properties of multi-walled carbon nanotubes modified by activation and ammoxidation. Carbon 44:2368–2375.  https://doi.org/10.1016/j.carbon.2006.05.044 CrossRefGoogle Scholar
  21. 21.
    Sivaraman P, Mishra SP, Potphode DD, Thakur AP, Shashidhara K, Samui AB, Bhattacharyya AR (2015) A supercapacitor based on longitudinal unzipping of multi-walled carbon nanotubes for high temperature application. RSC Adv 5:83546–83557.  https://doi.org/10.1039/C5RA13136G CrossRefGoogle Scholar
  22. 22.
    Ma W, Song L, Yang R, Zhang T, Zhao Y, Sun L, Ren Y, Liu D, Liu L, Shen J, Zhang Z, Xiang Y, Zhou W, Xie SS (2007) Directly synthesized strong, highly conducting, transparent single-walled carbon nanotube films. Nano Lett 7:2307–2311.  https://doi.org/10.1021/nl070915c CrossRefGoogle Scholar
  23. 23.
    Bradford PD, Wang X, Zhao H, Maria J-P, Jia Q, Zhu YT (2010) A novel approach to fabricate high volume fraction nanocomposites with long aligned carbon nanotubes. Compos Sci Technol 70:1980–1985.  https://doi.org/10.1016/j.compscitech.2010.07.020 CrossRefGoogle Scholar
  24. 24.
    Wang D, Song P, Liu C, Wu W, Fan S (2008) Highly oriented carbon nanotube papers made of aligned carbon nanotubes. Nanotechnology 19:75609.  https://doi.org/10.1088/0957-4484/19/7/075609
  25. 25.
    Zhang M, Fang S, Zakhidov AA, Lee SB, Aliev AE, Williams CD, Atkinson KR, Baughman RH (2005) Strong, transparent, multifunctional, carbon nanotube sheets. Science 309(80):1215–1219.  https://doi.org/10.1126/science.1115311
  26. 26.
    Lalia BS, Shah T, Hashaikeh R (2015) Microbundles of carbon nanostructures as binder free highly conductive matrix for LiFePO4 battery cathode. J Power Sources 278:314–319.  https://doi.org/10.1016/j.jpowsour.2014.12.079 CrossRefGoogle Scholar
  27. 27.
    Younes H, Al-Rub RA, Mahfuzur Rahman M, Dalaq A, Al Ghaferi A, Shah T (2016) Processing and property investigation of high-density carbon nanostructured papers with superior conductive and mechanical properties. Diam Relat Mater 68:109–117.  https://doi.org/10.1016/j.diamond.2016.06.016
  28. 28.
    Mustafa I, Lopez I, Younes H, Susantyoko RA, Al-Rub RA, Almheiri S (2017) Fabrication of freestanding sheets of multiwalled carbon nanotubes (Buckypapers) for vanadium redox flow batteries and effects of fabrication variables on electrochemical performance. Electrochim Acta 230:222–235.  https://doi.org/10.1016/j.electacta.2017.01.186 CrossRefGoogle Scholar
  29. 29.
    Susantyoko RA, Karam Z, Alkhoori S, Mustafa I, Wu C-H, Almheiri S (2017) A surface-engineered tape-casting fabrication technique toward the commercialisation of freestanding carbon nanotube sheets. J Mater Chem A 5:19255–19266.  https://doi.org/10.1039/C7TA04999D CrossRefGoogle Scholar
  30. 30.
    Malet BK, Shah TK (2014) Glass substrates having carbon nanotubes grown thereon and methods for production thereofGoogle Scholar
  31. 31.
    Shah TK, Liu H, Goldfinger JM, Morber JJ (2015) Carbon nanostructure-coated fibers of low areal weight and methods for producing the sameGoogle Scholar
  32. 32.
    Zhang S, Pan N (2015) Supercapacitors performance evaluation. Adv Energy Mater 5:1401401.  https://doi.org/10.1002/aenm.201401401 CrossRefGoogle Scholar
  33. 33.
    Susantyoko RA, Alkindi TS, Kanagaraj AB, An B, Alshibli H, Choi D, AlDahmani S, Fadaq H, Almheiri S (2018) Performance optimization of freestanding MWCNT-LiFePO4 sheets as cathodes for improved specific capacity of lithium-ion batteries. RSC Adv 8:16566–16573.  https://doi.org/10.1039/C8RA01461B
  34. 34.
    Pimenta MA, Dresselhaus G, Dresselhaus MS, Cançado LG, Jorio A, Saito R (2007) Studying disorder in graphite-based systems by Raman spectroscopy. Phys Chem Chem Phys 9:1276–1291.  https://doi.org/10.1039/b613962k CrossRefGoogle Scholar
  35. 35.
    Shimodaira N, Masui A (2002) Raman spectroscopic investigations of activated carbon materials. J Appl Phys 92:902–909.  https://doi.org/10.1063/1.1487434 CrossRefGoogle Scholar
  36. 36.
    Rouquerol J, Avnir D, Fairbridge CW, Everett DH, Haynes JH, Pernicone N, Ramsay JDF, Sing KSW, Unger KK (1994) Recommendations for the characterization of porous solids (technical report). Pure Appl Chem 66:1739–1758.  https://doi.org/10.1351/pac199466081739 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Mechanical EngineeringKhalifa University of Science and Technology, Masdar InstituteMasdar CityUnited Arab Emirates

Personalised recommendations