Skip to main content
Log in

The multiple effects of Al-doping on the structure and electrochemical performance of LiNi0.5Mn0.5O2 as cathode material at high voltage

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

The application of LiNi0.5Mn0.5O2 as a high-voltage cathode material for lithium-ion batteries is limited by its poor cycle performance. Therefore, we attempt to improve the cyclability of this material at high voltage by using a doping method and propose a detailed mechanism for the effect of the doping amount on the structure and electrochemical performance. In this work, LiNi0.5-zAlzMn0.5O2 (z = 0.00, 0.03, 0.05, 0.08) electrodes were prepared via a simple co-precipitation followed by a solid-state method. X-ray diffraction and Rietveld refinement revealed that a suitable amount of Al doping into LiNi0.5Mn0.5O2 can stabilize the structure and lower the Li/Ni cation mixing, but an excessive doping would lead to Al-ion doping in the lithium layer, which can block lithium diffusion and affect the rate property. Specifically, LiNi0.47Al0.03Mn0.5O2 shows a much higher capacity retention compared to LiNi0.5Mn0.5O2 both at 25 °C (78.5 vs. 68.8% at 0.2 C) and 60 °C (70.8 vs. 69.0% at 0.2 C). Moreover, Al-doping can retard the voltage drop during the discharge-charge state, with the discharge voltage for LiNi0.5-zAlzMn0.5O2 (z = 0.00, 0.03, 0.05, 0.08) decreasing slowly with increasing Al content.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Thackeray MM, Kang S-H, Johnson CS, Vaughey JT, Benedek R, Hackney SA (2007) Li2MnO3-stabilized LiMO2 (M = Mn, Ni, co) electrodes for lithium-ion batteries. J Mater Chem 17(30):3112–3125

    Article  CAS  Google Scholar 

  2. Armstrong AR, Holzapfel M, Novak P, Johnson CS, Kang S-H, Thackeray MM, Bruce PG (2006) Demonstrating oxygen loss and associated structural reorganization in the lithium battery cathode LiNi0.2Li0.2Mn0.6O2. J Am Chem Soc 128(26):8694–8698

    Article  CAS  Google Scholar 

  3. Ohzuku T, Ueda A, Nagayama M, Iwakoshi Y, Komori H (1993) COMPARATIVE-STUDY OF LICOO2, LINI1/2CO1/2O2 AND LINIO2 FOR 4-VOLT SECONDARY LITHIUM CELLS. Electrochim Acta 38(9):1159–1167

    Article  CAS  Google Scholar 

  4. Kong JZ, Ren C, Jiang YX, Zhou F, Yu C, Tang WP, Li H, Ye SY, Li JX (2016) Li-ion-conductive Li2TiO3-coated li Li0.2Mn0.51Ni0.19Co0.1O2 for high-performance cathode material in lithium-ion battery. J Solid State Electrochem 20(5):1435–1443

    Article  CAS  Google Scholar 

  5. Kim JK, Manthiram A (1997) A manganese oxyiodide cathode for rechargeable lithium batteries. Nature 390(6657):265–267

    Article  CAS  Google Scholar 

  6. Armstrong AR, Bruce PG (1996) Synthesis of layered LiMnO2 as an electrode for rechargeable lithium batteries. Nature 381(6582):499–500

    Article  CAS  Google Scholar 

  7. Alessandrini F, Conte M, Passerini S, Prosini PP (2001) Overview of ENEA's projects on lithium batteries. J Power Sources 97-8:768–771

    Article  Google Scholar 

  8. Brandt K (1995) PRACTICAL BATTERIES BASED ON THE SWING SYSTEM. J Power Sources 54(1):151–154

    Article  CAS  Google Scholar 

  9. Huang HT, Bruce PG (1994) A 4V lithium manganese oxide cathode for rocking-chair lithium-ion cells. J Electrochem Soc 141(9):L106–L107

    Article  CAS  Google Scholar 

  10. Shpak AY, Swamy SKK, Dittmer J, Vlasenko NY, Globa NI, Andriiko AA (2016) Formation of stable phases of the li-Mn-co oxide system at 800 a degrees C under ambient oxygen pressure. J Solid State Electrochem 20(1):87–94

    Article  CAS  Google Scholar 

  11. Ganesh KS, Reddy BP, Kumar PJ, Jayanthbabu K, Rosaiah P, Hussain OM (2015) Microstructural and electrochemical properties of LiTi (y) co (1-y) O-2 film cathodes prepared by RF sputtering. J Solid State Electrochem 19(12):3621–3627

    Article  Google Scholar 

  12. Li J, Wan L, Cao C (2016) A high-rate and long cycling life cathode for rechargeable lithium-ion batteries: hollow LiNi0.5Mn0.5O2 nano/micro hierarchical microspheres. Electrochim Acta 191:974–979

    Article  CAS  Google Scholar 

  13. Liu YM, Cao F, Chen BL, Zhao XZ, Suib SL, Chan HLW, Yuan JK (2012) High performance of LiNi0.5Mn0.5O2 positive electrode boosted by ordered three-dimensional nanostructures. J Power Sources 206:230–235

    Article  CAS  Google Scholar 

  14. Liu Y, Chen B, Cao F, Zhao X, Yuan J (2011) Synthesis of nanoarchitectured LiNi0.5Mn0.5O2 spheres for high-performance rechargeable lithium-ion batteries via an in situ conversion route. J Mater Chem 21(28):10437

    Article  CAS  Google Scholar 

  15. Mizuno F, Hayashi A, Tadanaga K (2003) All-solid-state lithium secondary batteries using a layer-structured LiNi0.5Mn0.5O2 cathode material. J Power Sources 124(1):170–173

    Article  CAS  Google Scholar 

  16. Labrini M, Saadoune I, Scheiba F, Almaggoussi A, Elhaskouri J, Amoros P, Ehrenberg H, Brotz J (2013) Magnetic and structural approach for understanding the electrochemical behavior of LiNi0.33Co0.33Mn0.33O2 positive electrode material. Electrochim Acta 111:567–574

    Article  CAS  Google Scholar 

  17. Singh G, Thomas R, Kumar A, Katiyar RS (2012) Electrochemical behavior of Cr- doped composite Li2MnO3-LiMn0.5Ni0.5O2 cathode materials. J Electrochem Soc 159(4):A410

    Article  CAS  Google Scholar 

  18. Zhao E, Chen M, Chen D, Xiao X, Hu Z (2015) A versatile coating strategy to highly improve the electrochemical properties of layered oxide LiMO(2) (M = Ni0.5Mn0.5 and Ni1/3Mn1/3Co1/3). ACS Appl Mater Interfaces 7(49):27096–27105

    Article  CAS  Google Scholar 

  19. Peng C, Jin J, Chen GZ (2007) A comparative study on electrochemical co-deposition and capacitance of composite films of conducting polymers and carbon nanotubes. Electrochim Acta 53(2):525–537

    Article  CAS  Google Scholar 

  20. Svegl F, Orel B, Grabec-Svegl I, Kaucic V (2000) Characterization of spinel Co3O4 and li-doped Co3O4 thin film electrocatalysts prepared by the sol-gel route. Electrochim Acta 45(25–26):4359–4371

    Article  CAS  Google Scholar 

  21. Zhang X, Jiang WJ, Mauger A, Qilu GF, Julien CM (2010) Minimization of the cation mixing in Li1-x(NMC)(1-x)O-2 as cathode material. J Power Sources 195(5):1292–1301

    Article  CAS  Google Scholar 

  22. Reale P, Privitera D, Panero S, Scrosati B (2007) An investigation on the effect of li+/Ni2+ cation mixing on electrochemical performances and analysis of the electron conductivity properties of LiCo0.33Mn0.33M0.33O2. Solid State Ionics 178(23–24):1390–1397

    Article  CAS  Google Scholar 

  23. Okamoto K, Shizuka K, Akai T, Tamaki Y, Okahara K, Nomura M (2006) X-ray absorption fine structure study on layered LiMO2 (M = Ni, Mn, co) cathode materials. J Electrochem Soc 153(6):A1120–A1127

    Article  CAS  Google Scholar 

  24. Zhao EY, Chen MM, Hu ZB, Xiao XL, Chen DF (2016) Layered/layered Homostyructure ion conductor coating strategy for high performance Lithium ion batteries. Electrochim Acta 208:64–70

    Article  CAS  Google Scholar 

  25. Dou SM, Wang WL, Li HJ, Xin XD (2011) Synthesis and electrochemical performance of LiNi0.475Mn0.475Al0.05O2 as cathode material for lithium-ion battery from Ni-Mn-Al-O precursor. J Solid State Electrochem 15(4):747–751

    Article  CAS  Google Scholar 

  26. Yang G, Zhao E, Chen M, Cheng Y, Xue L, Hu Z, Xiao X, Li F (2017) Mg doping improving the cycle stability of LiNi0.5Mn0.5O2 at high voltage. J Solid State Electrochem

  27. Kang SH, Kim J, Stoll ME, Abraham D, Sun YK, Amine K (2002) Layered li(Ni0.5-xMn0.5-xM '(2x))O-2 (M ' = co, Al, Ti; x = 0, 0.025) cathode materials for li-ion rechargeable batteries. J Power Sources 112(1):41–48

    Article  CAS  Google Scholar 

  28. Pan CJ, Lee YJ, Ammundsen B, Grey CP (2002) Li-6 MAS NMR studies of the local structure and electrochemical properties of Cr-doped lithium manganese and lithium cobalt oxide cathode materials for lithium-ion batteries. Chem Mater 14(5):2289–2299

    Article  CAS  Google Scholar 

  29. Myung ST, Komaba S, Hosoya K, Hirosaki N, Miura Y, Kumagai N (2005) Synthesis of LiNi0.5Mn0.5-xTixO2 by an emulsion drying method and effect of Ti on structure and electrochemical properties. Chem Mater 17(9):2427–2435

    Article  CAS  Google Scholar 

  30. Chen M, Zhao E, Chen D, Wu M, Han S, Huang Q, Yang L, Xiao X, Hu Z (2017) Decreasing li/Ni disorder and improving the electrochemical performances of Ni-rich LiNi0.8Co0.1Mn0.1O2 by ca doping. Inorg Chem 56(14):8355–8362

    Article  CAS  Google Scholar 

  31. Wang D, Li X, Wang Z, Guo H, Xu Y, Fan Y, Ru J (2016) Role of zirconium dopant on the structure and high voltage electrochemical performances of LiNi0.5Co0.2Mn0.3O2 cathode materials for lithium ion batteries. Electrochim Acta 188:48–56

    Article  CAS  Google Scholar 

  32. Hu G, Zhang M, Liang L, Peng Z, Du K, Cao Y (2016) Mg–Al–B co-substitution LiNi0.5Co0.2Mn0.3O2 cathode materials with improved cycling performance for lithium-ion battery under high cutoff voltage. Electrochim Acta 190:264–275

    Article  CAS  Google Scholar 

  33. Han CJ, Eom WS, Lee SM, Cho WI, Jang H (2005) Study of the electrochemical properties of Ga-doped LiNi0.8Co0.2O2 synthesized by a sol–gel method. J Power Sources 144(1):214–219

    Article  CAS  Google Scholar 

  34. Li F, Yang G, Jia G, Shangguan X, Zhuge Q, Bai B (2017) Improvement in the electrochemical performance of a LiNi0.5Mn0.5O2 cathode material at high voltage. J Appl Electrochem

  35. Kaneda H (2017) Improving the Cycling Performance and Thermal Stability of LiNi0.6Co0.2Mn0.2O2 Cathode Materials by Nb-doping and Surface Modification. International J Electrochem Sci :4640–4653

  36. Wang Y, Yang Z, Qian Y, Gu L, Zhou H (2015) New insights into improving rate performance of Lithium-rich cathode material. Adv Mater 27(26):3915–3920

    Article  CAS  Google Scholar 

  37. Chen J, Tan X, Liu H, Guo L, Zhang J, Jiang Y, Zhang J, Wang H, Feng X, Chu W (2017) Understanding the underlying mechanism of the enhanced performance of Si doped LiNi0.5Mn0.5-xSixO2 cathode material. Electrochim Acta 228:167–174

    Article  CAS  Google Scholar 

  38. Zhang J, Gao R, Sun L, Zhang H, Hu Z, Liu X (2016) Unraveling the multiple effects of Li2ZrO3 coating on the structural and electrochemical performances of LiCoO2 as high-voltage cathode materials. Electrochim Acta 209:102–110

    Article  CAS  Google Scholar 

  39. Yang G, Jia G, Shangguan X, Zhu Z, Peng Z, Zhuge Q, Li F, Bai B (2017) The synergistic effects of Li2SiO3-coating and Si4+−doping for LiNi0.5Mn0.5O2 cathode materials on the structure and the electrochemical properties. J Electrochem Soc 164(12):A2889–A2897

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the Natural Science Foundation of China (U1507106 and U1507114), the Natural Science Foundation of Qinghai Province (2016-GX-101), the Hunan Provincial Science and Technology Plan Project (Nos. 2016TP1007 and 2017TP1001), the Hunan Provincial Science and Technology Plan Project (No. 2016TP1007).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Suqin Liu.

Electronic supplementary material

ESM 1

(DOCX 2235 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jia, G., Liu, S., Yang, G. et al. The multiple effects of Al-doping on the structure and electrochemical performance of LiNi0.5Mn0.5O2 as cathode material at high voltage. Ionics 24, 3705–3715 (2018). https://doi.org/10.1007/s11581-018-2553-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-018-2553-z

Keywords

Navigation