pp 1–11 | Cite as

Tamarind seed polysaccharide biopolymer membrane for lithium-ion conducting battery

  • L. Sampath Kumar
  • P. Christopher Selvin
  • S. Selvasekarapandian
  • R. Manjuladevi
  • S. Monisha
  • P. Perumal
Original Paper


Solid biopolymers have gained much attention in the development of polymer electrolytes due to its biocompatibility, film-forming nature, and non-toxicity. In the present work, biopolymer membrane has been prepared using tamarind seed polysaccharide (TSP) as host polymer and various concentrations of lithium chloride (LiCl) salt as dopant by solution casting technique. The prepared biopolymer electrolyte has been characterized by XRD, FTIR, differential scanning calorimetry (DSC) analysis, AC impedance spectroscopy analysis, and transference number measurement. XRD analysis has been done to investigate the amorphous/crystalline nature of the polymer membrane. The highest amorphous nature has been found for 1 g of TSP with 0.4 g LiCl. FTIR spectrum analysis confirms the complex formation between TSP biopolymer with LiCl. From AC impedance conductivity analysis, the maximum ionic conductivity is of the order of 6.7 × 10−3 S cm−1 at room temperature for 1 g TSP with 0.4 g LiCl, whereas for pure TSP biopolymer membrane, the ionic conductivity is of the order of 5.48 × 10−7 S cm−1. The glass transition temperature for the highest conducting biopolymer membrane for the composition of 1 g TSP: 0.4 g LiCl has been found to be 44.25 °C using the DSC technique. Employing the maximum conducting biopolymer membrane, a lithium-ion conducting battery has been fabricated and its discharge characteristics have been studied.


Biopolymer Electrolyte membrane Impedance spectroscopy XRD FTIR DSC Battery 

Supplementary material

11581_2018_2541_MOESM1_ESM.docx (522 kb)
ESM 1 (DOCX 522 kb)


  1. 1.
    Su MS, Ahmad A, Badri KH et al (2013) The potential of polyurethane bio-based solid polymer electrolyte for photoelectrochemical cell application. Int J Hydrog Energy 39(6):1–13Google Scholar
  2. 2.
    Goodenough JB, Kim Y (2010) Challenges for rechargeable Li batteries. J Power Sources 196:6688–6694CrossRefGoogle Scholar
  3. 3.
    Scrosati B, Garche J (2010) Lithium batteries: status, prospects and future. J Power Sources 195:2419–2430CrossRefGoogle Scholar
  4. 4.
    Tarascon JM, Armand M (2001) Issues and challenges facing rechargeable lithium batteries. Nature 414:359–367CrossRefGoogle Scholar
  5. 5.
    Yoshio M, Brodd RJ, Kozawa A (2009) Lithium-ion batteries: science and technologies. Springer, BerlinCrossRefGoogle Scholar
  6. 6.
    Manuel Stephan A, Nahm KS (2006) Review on composite polymer electrolytes for lithium batteries. Polymer (Guildf) 47:5952–5964CrossRefGoogle Scholar
  7. 7.
    Samsudin AS, Lai HM, Isa MIN (2014) Biopolymer materials based carboxymethyl cellulose as a proton conducting biopolymer electrolyte for application in rechargeable proton battery. Electrochim Acta 129:1–13CrossRefGoogle Scholar
  8. 8.
    Singh R, Polu AR, Bhattacharya B, Rhee HW, Varlikli C, Singh PK (2016) Perspectives for solid biopolymer electrolytes in dye sensitized solar cell and battery application. Renew Sust Energ Rev 65:1098–1117CrossRefGoogle Scholar
  9. 9.
    Chandra MVL, Karthikeyan S, Selvasekarapandian S et al (2017) Study of PVAc-PMMA-LiCl polymer blend electrolyte and the effect of plasticizer ethylene carbonate and nanofiller titania on PVAc-PMMA-LiCl polymer blen1d electrolyte. J Polym Eng 37:617–631Google Scholar
  10. 10.
    Park CH, Kim DW, Prakash J, Sun YK (2003) Electrochemical stability and conductivity enhancement of composite polymer electrolytes. Solid State Ionics 159:111–119CrossRefGoogle Scholar
  11. 11.
    Avachat AM, Dash RR, Shrotriya SN (2011) Recent investigations of plant based natural gums , mucilages and resins in novel drug delivery systems. Indian J Pharm Educ Res 45:86–99Google Scholar
  12. 12.
    Durai R, Rajalakshmi G, Joseph J, Kanchalochana SN, Hari V (2012) Tamarind seed polysaccharide: a promising natural excipient for pharmaceuticals. Int J Green Pharm 6:270CrossRefGoogle Scholar
  13. 13.
    Tan W, Arof AK (2016) Biopolymer electrolytes for energy devices. Nanostruct Polym Membr 2:311–356Google Scholar
  14. 14.
    Quartarone E, Mustarelli P (2011) Electrolytes for solid-state lithium rechargeable batteries: recent advances and perspectives. Chem Soc Rev 40:2525–2540CrossRefGoogle Scholar
  15. 15.
    Shukur MF (2015) Characterization of ion conducting solid biopolymer electrolytes based on starch-chitosan blend and application in electrochemical devices. Thesis dissertation, University of Malaya, MalaysiaGoogle Scholar
  16. 16.
    Amran NNA, Manan NSA, Kadir MFZ (2016) The effect of LiCF3SO3 on the complexation with potato starch-chitosan blend polymer electrolytes. Ionics 22(9):1647–1658CrossRefGoogle Scholar
  17. 17.
    Ma X, Yu J, He K, Wang N (2007) The effects of different plasticizers on the properties of thermoplastic starch as solid polymer electrolytes. Macromol Mater Eng 292:503–510CrossRefGoogle Scholar
  18. 18.
    Shukur MF, Ibrahim FM, Majid NA et al (2013) Electrical analysis of amorphous corn starch-based polymer electrolyte membranes doped with LiI. Phys Scr 88:1–9CrossRefGoogle Scholar
  19. 19.
    Ramesh S, Liew CW, Arof AK (2011) Ion conducting corn starch biopolymer electrolytes doped with ionic liquid 1-butyl-3-methylimidazolium hexafluorophosphate. J Non-Cryst Solids 357:3654–3660CrossRefGoogle Scholar
  20. 20.
    Selvakumar M, Bhat DK (2008) LiClO4 doped cellulose acetate as biodegradable polymer electrolyte for supercapacitors. J Appl Polym Sci 110:594–602CrossRefGoogle Scholar
  21. 21.
    Shukur MF, Ithnin R, Kadir MFZ (2014) Electrical properties of proton conducting solid biopolymer electrolytes based on starch-chitosan blend. Ionics (Kiel) 20:977–999CrossRefGoogle Scholar
  22. 22.
    Majid SR, Arof AK (2005) Proton-conducting polymer electrolyte films based on chitosan acetate complexed with NH4NO3 salt. Phys B Condens Matter 355:78–82CrossRefGoogle Scholar
  23. 23.
    Viera DF, Avellanneda CO, Pawlicka A (2008) AC impedance, X-ray diffraction and DSC investigation on gelatin based-electrolyte with LiClO4. Mol Cryst Liq Cryst 485:95–104CrossRefGoogle Scholar
  24. 24.
    Koh JCH, Ahmad ZA, Mohamad AA (2012) Bacto agar-based gel polymer electrolyte. Ionics 18:359–364CrossRefGoogle Scholar
  25. 25.
    Boopathi G, Pugalendhi S, Selvasekarapandian S et al (2017) Development of proton conducting biopolymer membrane based on agar–agar for fuel cell. Ionics 23:2781–2790CrossRefGoogle Scholar
  26. 26.
    Selvalakshmi S, Mathavan T, Selvasekarapandian S, Premalatha M (2017) Study on NH4I composition effect in agar–agar-based biopolymer electrolyte. Ionics 23:2791–2797CrossRefGoogle Scholar
  27. 27.
    Rudhziah S, Ahmad A, Ahmad I, Mohamed NS (2015) Biopolymer electrolytes based on blend of kappa-carrageenan and cellulose derivatives for potential application in dye sensitized solar cell. Electrochim Acta 175:162–168CrossRefGoogle Scholar
  28. 28.
    Karthikeyan S, Selvasekarapandian S, Premalatha M, Monisha S, Boopathi G, Aristatil G, Arun A, Madeswaran S (2017) Proton-conducting I-carrageenan-based biopolymer electrolyte for fuel cell application. Ionics 23:2775–2780CrossRefGoogle Scholar
  29. 29.
    Vijaya N, Selvasekarapandian S, Sornalatha M, Sujithra KS, Monisha S (2017) Proton-conducting biopolymer electrolytes based on pectin doped with NH4X (X=Cl,Br). Ionics 23:2799–2808CrossRefGoogle Scholar
  30. 30.
    Hsu HL, Tien CF, Yang YT, Leu J (2013) Dye-sensitized solar cells based on agarose gel electrolytes using allylimidazolium iodides and environmentally benign solvents. Electrochim Acta 91:208–213CrossRefGoogle Scholar
  31. 31.
    Sharma M, Mondal D, Mukesh C, Prasad K (2014) Preparation of tamarind gum based soft ion gels having thixotropic properties. Carbohydr Polym 102:467–471CrossRefGoogle Scholar
  32. 32.
    Khanna M, Diwivedi AK, Singh S (1997) Polyose from seed of Tamarindus indica of property and immense pharmaceutical use. Trends Carbohydr Chem 4:79–81Google Scholar
  33. 33.
    Phani Kumar GK, Battu G, Kotha NS, Raju L (2011) Isolation and evaluation of tamarind seed polysaccharide being used as a polymer in pharmaceutical dosage forms. Res J Pharm Biol Chem Sci 2:274–290Google Scholar
  34. 34.
    Tattiyakul J, Muangnapoh C, Poommarinvarakul S (2010) Isolation and rheological properties of tamarind seed polysaccharide from tamarind kernel powder using protease enzyme and high intensity ultrasound. J Food Sci 75:253–260CrossRefGoogle Scholar
  35. 35.
    Zhang J, Xu S, Zhang S, Du Z (2008) Preparation and characterization of tamarind gum/sodium alginate composite gel beads. Iran Polym J 17(12):899–906Google Scholar
  36. 36.
    Premalatha M, Mathavan T, Selvasekarapandian S, Monisha S, Pandi DV, Selvalakshmi S (2016) Investigations on proton conducting biopolymer membranes based on tamarind seed polysaccharide incorporated with ammonium thiocyanate. J Non-Cryst Solids 453:131–140CrossRefGoogle Scholar
  37. 37.
    Premalatha M, Mathavan T, Selvasekarapandian S, Selvalakshmi S (2017) Incorporation of NH4Br in tamarind seed polysaccharide biopolymer and its potential use in electrochemical energy storage devices. Org Electron 50:418–425CrossRefGoogle Scholar
  38. 38.
    Premalatha M, Mathavan T, Selvasekarapandian S, Monisha S, Selvalakshmi S, Vinoth Pandi D (2017) Tamarind seed polysaccharide (TSP)-based Li-ion conducting membranes. Ionics (Kiel) 23:2677–2684CrossRefGoogle Scholar
  39. 39.
    Hodge RM, Edward GH, Simon GP (1996) Water absorption and states of water in semicrystalline poly(vinyl alcohol) films. Polymer 37:1371–1376CrossRefGoogle Scholar
  40. 40.
    Ramesh S, Liew CW, Morris E, Durairaj R (2010) Effect of PVC on ionic conductivity, crystallographic structural, morphological and thermal characterizations in PMMA-PVC blend-based polymer electrolytes. Thermochim Acta 511:140–146CrossRefGoogle Scholar
  41. 41.
    Ravi M, Song S, Wang J, Wang T, Nadimicherla R (2015) Ionic liquid incorporated biodegradable gel polymer electrolyte for lithium ion battery applications. J Mater Sci Mater Electron 2:1370–1377Google Scholar
  42. 42.
    Awadhia A, Agrawal SL (2007) Structural, thermal and electrical characterizations of PVA:DMSO:NH4SCN gel electrolytes. Solid State Ionics 178:951–958CrossRefGoogle Scholar
  43. 43.
    Ramaswamy M, Malayandi T, Subramanian S, Srinivasalu J, Rangaswamy M (2017) Magnesium ion conducting polyvinyl alcohol–polyvinyl pyrrolidone-based blend polymer electrolyte. Ionics (Kiel) 23(7):1771–1781CrossRefGoogle Scholar
  44. 44.
    Sikkanthar S, Karthikeyan S, Selvasekarapandian S, Pandi DV, Nithya S, Sanjeeviraja C (2015) Electrical conductivity characterization of polyacrylonitrile-ammonium bromide polymer electrolyte system. J Solid State Electrochem 19:987–999CrossRefGoogle Scholar
  45. 45.
    Monisha S, Mathavan T, Selvasekarapandian S, Milton Franklin Benial A, Aristatil G, Mani N, Premalatha M, Vinoth pandi D (2017) Investigation of bio polymer electrolyte based on cellulose acetate-ammonium nitrate for potential use in electrochemical devices. Carbohydr Polym 157:38–47CrossRefGoogle Scholar
  46. 46.
    Bhuvaneswari R, Karthikeyan S, Selvasekarapandian S et al (2014) Preparation and characterization of PVA complexed with amino acid, proline. Ionics 21:387–399CrossRefGoogle Scholar
  47. 47.
    Hashmi SA, Kumar A, Maurya KK, Chandra S (1993) Proton conducting polymer electrolyte. I. The polyethylene oxide + NH4ClO4 system. J Phys D Appl Phys 23:1307CrossRefGoogle Scholar
  48. 48.
    Huh P-H, Choi M-G, Jo NJ, Lee J-K, Lee J-O, Yang W (2004) Effect of salt concentration on the glass transition temperature and ionic conductivity of poly(ethylene glycol)-polyurethane/LiClO4 complexes. Macromol Res 12:422–426CrossRefGoogle Scholar
  49. 49.
    Macdonald JR (1992) Impedance Spectroscopy. Ann Biomed Eng 20:289–305CrossRefGoogle Scholar
  50. 50.
    Boukamp BA (1986) A nonlinear least squares fit procedure for analysis of immittance data of electrochemical systems. Solid State Ionics 20:31–44CrossRefGoogle Scholar
  51. 51.
    Hema M, Selvasekarapandian S, Hirankumar G (2007) Vibrational and impedance spectroscopic analysis of poly(vinyl alcohol)-based solid polymer electrolytes. Ionics 13:483–487CrossRefGoogle Scholar
  52. 52.
    Woo H, Majid S, Arof A (2012) Dielectric properties and morphology of polymer electrolyte based on poly (ɛ-caprolactone) and ammonium thiocyanate. Mater Chem Phys 134:755–761CrossRefGoogle Scholar
  53. 53.
    Dutta P, Biswas S, De SK (2002) Dielectric relaxation in polyaniline polyvinyl alcohol composites. Mater Res Bull 37:193–200CrossRefGoogle Scholar
  54. 54.
    Armstrong RD, Dickinson T, Willis PM (1974) The A.C. impedance of powdered and sintered solid ionic conductors. J Electroanal Chem 53:389–405CrossRefGoogle Scholar
  55. 55.
    Ramesh S, Yahaya A, Arof A (2002) Dielectric behaviour of PVC-based polymer electrolytes. Solid State Ionics 152:291–294CrossRefGoogle Scholar
  56. 56.
    Kyritsis A, Pissis P, Grammatikakis J (1995) Dielectric relaxation spectroscopy in poly(hydroxyethyl acrylates)/water hydrogels. J Polym Sci B Polym Phys 33:1737–1750CrossRefGoogle Scholar
  57. 57.
    Tan W, Ramesh S, Arof AK (2009) Studies on the structure and transport properties of hexanoyl chitosan-based polymer electrolytes. Phys B Condens Matter 404(21):4308–4311CrossRefGoogle Scholar
  58. 58.
    Monisha S, Mathavan T, Selvasekarapandian S, Benial AMF, latha MP (2017) Preparation and characterization of cellulose acetate and lithium nitrate for advanced electrochemical devices. Ionics 23:2697–2706CrossRefGoogle Scholar
  59. 59.
    Kingslin Mary Genova F, Selvasekarapandian S, Vijaya N, Sivadevi S, Premalatha M, Karthikeyan S (2017) Lithium ion-conducting polymer electrolytes based on PVA–PAN doped with lithium triflate. Ionics 23:2727–2734CrossRefGoogle Scholar
  60. 60.
    Kingslin Mary Genova F, Selvasekarapandian S, Karthikeyan S et al (2015) Study on blend polymer (PVA-PAN) doped with lithium bromide. Polym Sci 57:851–862Google Scholar
  61. 61.
    Perumal P, Christopher Selvin P, Selvasekarapandian S (2018) Characterization of biopolymer pectin with lithium chloride and its applications to electrochemical devices. Ionics.
  62. 62.
    Broadhead J, Kuo HC (2001) In: Linden D, Reddy TB (eds) Handbook of batteries. McGraw-Hill, New York, p 2.1Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • L. Sampath Kumar
    • 1
    • 2
  • P. Christopher Selvin
    • 3
  • S. Selvasekarapandian
    • 3
    • 4
  • R. Manjuladevi
    • 4
    • 5
  • S. Monisha
    • 4
  • P. Perumal
    • 3
    • 4
  1. 1.Department of PhysicsBuilders Engineering CollegeTiruppurIndia
  2. 2.Department of PhysicsNGM CollegePollachiIndia
  3. 3.Department of PhysicsBharathiar UniversityCoimbatoreIndia
  4. 4.Materials Research CenterCoimbatoreIndia
  5. 5.Department of PhysicsSNS College of EngineeringCoimbatoreIndia

Personalised recommendations