Skip to main content

Advertisement

Log in

Development of electrospun PAN/CoS nanocomposite membrane electrolyte for high-performance DSSC

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

In the present work, we prepared electrospun polyacrylonitrile (PAN)/ cobalt sulfide (CoS) nanocomposite membranes by encapsulating different weight percentage (1, 2, and 3 wt%) of CoS nanoparticles in PAN nanofibers for dye-sensitized solar cells (DSSCs). The electrospun PAN/CoS nanocomposite membranes (esCPMs) were activated by immersing in an ionic liquid electrolyte containing 0.5 M LiI, 0.05 M I2, 0.5 M 4-tert butylpyridine and 0.5 M 1-butyl-3-methylimidazolium iodide in acetonitrile to obtain their corresponding nanocomposite membrane electrolytes (esCPMEs). The influences of CoS content on the physical and electrochemical properties of esPM were investigated. The addition of CoS nanoparticles reduced the degree of partial crystallinity of esPM to an amorphous state. An electrochemical impedance and Tafel polarization measurements revealed that the esCPME has high electrocatalytic activity with enhanced ionic conductivity. The 2 wt% CoS encapsulated esCPME ensured the effective charge transfer at the electrode/electrolyte interface with the lower electron recombination rate in DSSC, which ultimately increased the photoconversion efficiency (7.41%) at an incident light intensity of 100 mW cm−2.

Polymer Membrane Electrolyte: The influence of CoS content on the physical and electrochemical properties of electrospun PAN membrane electrolyte is studied. The ion transport mechanism of DSSC fabricated with different wt% of CoS embedded esCPMEs is also studied. Among them, 2wt% of CoS embedded esCPME has improved photovoltaic performance of DSSC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Brennan LJ, Barwich ST, Satti A, Faure A, Gun’ko YK (2013) Graphene-ionic liquid electrolytes for dye sensitised solar cells. J Mater Chem A 1(29):8379–8384. https://doi.org/10.1039/C3TA11609C

    Article  CAS  Google Scholar 

  2. Murugadoss V, Wang N, Tadakamalla S, Wang B, Guo Z, Angaiah S (2017) In situ grown cobalt selenide/graphene nanocomposite counter electrodes for enhanced dye-sensitized solar cell performance. J Mater Chem A 5:14583–14594. https://doi.org/10.1039/C7TA00941K

    Article  CAS  Google Scholar 

  3. Lee M, Balasingam SK, Ko Y, Jeong HY, Min BK, Yun YJ, Jun Y (2016) Graphene modified vanadium pentoxide nanobelts as an efficient counter electrode for dye-sensitized solar cells. Synth Met 215:110–115. https://doi.org/10.1016/j.synthmet.2015.12.015

    Article  CAS  Google Scholar 

  4. O'Regan B, Gratzel M (1991) A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature 353(6346):737–740

    Article  CAS  Google Scholar 

  5. Balasingam SK, Jun Y (2015) Recent progress on reduced graphene oxide-based counter electrodes for cost-effective dye-sensitized solar cells. Isr J Chem 55(9):955–965. https://doi.org/10.1002/ijch.201400213

    Article  CAS  Google Scholar 

  6. Balasingam SK, Kang MG, Jun Y (2013) Metal substrate based electrodes for flexible dye-sensitized solar cells: fabrication methods, progress and challenges. Chem Commun 49(98):11457–11475. https://doi.org/10.1039/C3CC46224B

    Article  CAS  Google Scholar 

  7. Ko K-W, Lee M, Sekhon SS, Balasingam SK, Han C-H, Jun Y (2013) Efficiency enhancement of dye-sensitized solar cells by the addition of an oxidizing agent to the TiO2 paste. ChemSusChem 6(11):2117–2123. https://doi.org/10.1002/cssc.201300280

    Article  CAS  PubMed  Google Scholar 

  8. Salam Z, Vijayakumar E, Subramania A, Sivasankar N, Mallick S (2015) Graphene quantum dots decorated electrospun TiO2 nanofibers as an effective photoanode for dye sensitized solar cells. Sol Energy Mater Sol Cells 143:250–259. https://doi.org/10.1016/j.solmat.2015.07.001

    Article  CAS  Google Scholar 

  9. Balasingam SK, Lee M, Kang MG, Jun Y (2013) Improvement of dye-sensitized solar cells toward the broader light harvesting of the solar spectrum. Chem Commun 49(15):1471–1487. https://doi.org/10.1039/C2CC37616D

    Article  CAS  Google Scholar 

  10. Lim J, Lee M, Balasingam SK, Kim J, Kim D, Jun Y (2013) Fabrication of panchromatic dye-sensitized solar cells using pre-dye coated TiO2 nanoparticles by a simple dip coating technique. RSC Adv 3(14):4801–4805. https://doi.org/10.1039/C3RA40339D

    Article  CAS  Google Scholar 

  11. Scully SR, Lloyd MT, Herrera R, Giannelis EP, Malliaras GG (2004) Dye-sensitized solar cells employing a highly conductive and mechanically robust nanocomposite gel electrolyte. Synth Met 144(3):291–296 https://doi.org/10.1016/j.synthmet.2004.04.011

    Article  CAS  Google Scholar 

  12. Shibl HM, Hafez HS, Rifai RI, Abdel Mottaleb MSA (2013) Environmental friendly, low cost quasi solid state dye sensitized solar cell: polymer electrolyte introduction. J Inorg Organomet Polym Mater 23(4):944–949. https://doi.org/10.1007/s10904-013-9874-1

    Article  CAS  Google Scholar 

  13. Yuan S, Tang Q, He B, Zhao Y (2014) Multifunctional graphene incorporated conducting gel electrolytes in enhancing photovoltaic performances of quasi-solid-state dye-sensitized solar cells. Power Sourc 260:225–232. https://doi.org/10.1016/j.jpowsour.2014.03.034

    Article  CAS  Google Scholar 

  14. Zhao J, Jo S-G, Kim D-W (2014) Photovoltaic performance of dye-sensitized solar cells assembled with electrospun polyacrylonitrile/silica-based fibrous composite membranes. Electrochim Acta 142:261–267. https://doi.org/10.1016/j.electacta.2014.07.109

    Article  CAS  Google Scholar 

  15. Yuh-Lang L, Yu-Jen S, Yu-Min Y (2008) A hybrid PVDF-HFP/nanoparticle gel electrolyte for dye-sensitized solar cell applications. Nanotechnology 19(45):455201

    Article  Google Scholar 

  16. Kim J-K, Cheruvally G, Li X, Ahn J-H, Kim K-W, Ahn H-J (2008) Preparation and electrochemical characterization of electrospun, microporous membrane-based composite polymer electrolytes for lithium batteries. J Power Sources 178(2):815–820. https://doi.org/10.1016/j.jpowsour.2007.08.063

    Article  CAS  Google Scholar 

  17. Priya ARS, Subramania A, Jung Y-S, Kim K-J (2008) High-performance quasi-solid-state dye-sensitized solar cell based on an electrospun PVdF−HFP membrane electrolyte. Langmuir 24(17):9816–9819. https://doi.org/10.1021/la801375s

    Article  CAS  PubMed  Google Scholar 

  18. Dissanayake MAKL, Divarathne HKDWMNR, Thotawatthage CA, Dissanayake CB, Senadeera GKR, Bandara BMR (2014) Dye-sensitized solar cells based on electrospun polyacrylonitrile (PAN) nanofibre membrane gel electrolyte. Electrochim Acta 130:76–81. https://doi.org/10.1016/j.electacta.2014.02.122

    Article  CAS  Google Scholar 

  19. Ku Z, Li X, Liu G, Wang H, Rong Y, Xu M, Liu L, Hu M, Yang Y, Han H (2013) Transparent NiS counter electrodes for thiolate/disulfide mediated dye-sensitized solar cells. J Mater Chem A 1(2):237–240. https://doi.org/10.1039/C2TA00304J

    Article  CAS  Google Scholar 

  20. Lin J-Y, Liao J-H (2012) Mesoporous electrodeposited-CoS film as a counter electrode catalyst in dye-sensitized solar cells. J Electrochem Soc 159(2):D65–D71

    Article  CAS  Google Scholar 

  21. Lin J-Y, Liao J-H, Wei T-C (2011) Honeycomb-like CoS counter electrodes for transparent dye-sensitized solar cells. Electrochem Solid-State Lett 14(4):D41–D44

    Article  CAS  Google Scholar 

  22. Sun H, Qin D, Huang S, Guo X, Li D, Luo Y, Meng Q (2011) Dye-sensitized solar cells with NiS counter electrodes electrodeposited by a potential reversal technique. Energy Environ Sci 4(8):2630–2637. https://doi.org/10.1039/C0EE00791A

    Article  CAS  Google Scholar 

  23. Vijayakumar E, Subramania A, Fei Z, Dyson PJ (2015) High-performance dye-sensitized solar cell based on an electrospun poly(vinylidene fluoride-co-hexafluoropropylene)/cobalt sulfide nanocomposite membrane electrolyte. RSC Adv 5(64):52026–52032. https://doi.org/10.1039/C5RA04944J

    Article  CAS  Google Scholar 

  24. Bao S-J, Li CM, Guo C-X, Qiao Y (2008) Biomolecule-assisted synthesis of cobalt sulfide nanowires for application in supercapacitors. J Power Sources 180(1):676–681. https://doi.org/10.1016/j.jpowsour.2008.01.085

    Article  CAS  Google Scholar 

  25. Solarajan AK, Murugadoss V, Angaiah S (2017) High performance electrospun PVdF-HFP/SiO2 nanocomposite membrane electrolyte for Li-ion capacitors. J Appl Polym Sci 134(32):45177. https://doi.org/10.1002/app.45177

    Article  CAS  Google Scholar 

  26. Subramania A, Vijayakumar E, Sivasankar N, Sathiya Priya AR, Kim K-J (2013) Effect of different compositions of ethylene carbonate and propylene carbonate containing iodide/triiodide redox electrolyte on the photovoltaic performance of DSSC. Ionics 19(11):1649–1653. https://doi.org/10.1007/s11581-013-0892-3

    Article  CAS  Google Scholar 

  27. Panthi G, Barakat NAM, Abdelrazek Khalil K, Yousef A, Jeon K-S, Kim HY (2013) Encapsulation of CoS nanoparticles in PAN electrospun nanofibers: effective and reusable catalyst for ammonia borane hydrolysis and dyes photodegradation. Ceram Int 39(2):1469–1476. https://doi.org/10.1016/j.ceramint.2012.07.091

    Article  CAS  Google Scholar 

  28. Chan Y-F, Wang C-C, Chen C-Y (2013) Quasi-solid DSSC based on a gel-state electrolyte of PAN with 2-D graphenes incorporated. J Mater Chem A 1(18):5479–5486. https://doi.org/10.1039/C3TA01684F

    Article  CAS  Google Scholar 

  29. Ramachandran R, Felix S, Saranya M, Santhosh C, Velmurugan V, Ragupathy BPC, Jeong SK, Grace AN (2013) Synthesis of cobalt sulfide-graphene (CoS/G) nanocomposites for supercapacitor applications. IEEE Trans Nanotechnol 12(6):985–990. https://doi.org/10.1109/TNANO.2013.2278287

    Article  CAS  Google Scholar 

  30. Bi H, Jiang X, Yang C, Hong J (2003) Synthesis of cobalt disulfide nanoparticles in polymer matrix. Mater Lett 57(16):2606–2611. https://doi.org/10.1016/S0167-577X(02)01336-8

    Article  CAS  Google Scholar 

  31. Sathisha TV, Swamy BEK, Reddy S, Chandrashekar BN, Eswarappa B (2012) Clay modified carbon paste electrode for the voltammetric detection of dopamine in presence of ascorbic acid. J Mol Liq 172:53–58. https://doi.org/10.1016/j.molliq.2012.05.005

    Article  CAS  Google Scholar 

  32. Kim JR, Choi SW, Jo SM, Lee WS, Kim BC (2005) Characterization and properties of P(VdF-HFP)-based fibrous polymer electrolyte membrane prepared by electrospinning. J Electrochem Soc 152(2):A295–A300. https://doi.org/10.1149/1.1839531

    Article  CAS  Google Scholar 

  33. Solarajan AK, Murugadoss V, Angaiah S (2017) Dimensional stability and electrochemical behaviour of ZrO2 incorporated electrospun PVdF-HFP based nanocomposite polymer membrane electrolyte for Li-ion capacitors. Sci Rep 7:45390. https://doi.org/10.1038/srep45390

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Kim J-U, Park S-H, Choi H-J, Lee W-K, Lee J-K, Kim M-R (2009) Effect of electrolyte in electrospun poly(vinylidene fluoride-co-hexafluoropropylene) nanofibers on dye-sensitized solar cells. Sol Energy Mater Sol Cells 93(6):803–807. https://doi.org/10.1016/j.solmat.2008.09.045

    Article  CAS  Google Scholar 

  35. Li Q, Chen X, Tang Q, Cai H, Qin Y, He B, Li M, Jin S, Liu Z (2014) Enhanced photovoltaic performances of quasi-solid-state dye-sensitized solar cells using a novel conducting gel electrolyte. J Power Sources 248:923–930. https://doi.org/10.1016/j.jpowsour.2013.10.025

    Article  CAS  Google Scholar 

  36. Zhou H, Shi Y, Qin D, An J, Chu L, Wang C, Wang Y, Guo W, Wang L, Ma T (2013) Printable fabrication of Pt-and-ITO free counter electrodes for completely flexible quasi-solid dye-sensitized solar cells. J Mater Chem A 1(12):3932–3937. https://doi.org/10.1039/C3TA00960B

    Article  CAS  Google Scholar 

  37. Yang Y, Zhang J, Zhou C, Wu S, Xu S, Liu W, Han H, Chen B, Zhao X-Z (2008) Effect of lithium iodide addition on poly(ethylene oxide)-poly(vinylidene fluoride) polymer-blend electrolyte for dye-sensitized nanocrystalline solar cell. J Phys Chem B 112(21):6594–6602. https://doi.org/10.1021/jp801156h

    Article  CAS  PubMed  Google Scholar 

  38. Vijayakumar E, Subramania A, Fei Z, Dyson PJ (2015) Effect of 1-butyl-3-methylimidazolium iodide containing electrospun poly(vinylidene fluoride-co-hexafluoropropylene) membrane electrolyte on the photovoltaic performance of dye-sensitized solar cells. J Appl Polym Sci 132(23):42032. https://doi.org/10.1002/app.42032

    Article  CAS  Google Scholar 

  39. Dissanayake SS, Dissanayake MAKL, Seneviratne VA, Senadeera GKR, Thotawattage CA (2016) Performance of dye sensitized solar cells fabricated with electrospun polymer nanofiber based electrolyte. Mater Today 3:S104–S111. https://doi.org/10.1016/j.matpr.2016.01.014

    Article  Google Scholar 

  40. Fathy M, Kashyout AB, El Nady J, Ebrahim S, Soliman MB (2016) Electrospun polymethylacrylate nanofibers membranes for quasi-solid-state dye sensitized solar cells. Alex Eng J 55(2):1737–1743. https://doi.org/10.1016/j.aej.2016.03.019

    Article  Google Scholar 

  41. Mohan VM, Murakami K, Kono A, Shimomura M (2013) Poly(acrylonitrile)/activated carbon composite polymer gel electrolyte for high efficiency dye sensitized solar cells. J Mater Chem A 1(25):7399–7407. https://doi.org/10.1039/C3TA10392G

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Mr. MV is grateful to the Department of Science and Technology (DST), New Delhi for providing Fellowship under DST-Inspire Award (IF160290).

Funding

The authors gratefully acknowledge the Council of Scientific and Industrial Research (CSIR), New Delhi for their financial support (Ref. No. 01/2810/14/EMR-II, dt. 24/11/2014).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Subramania Angaiah.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Murugadoss, V., Arunachalam, S., Elayappan, V. et al. Development of electrospun PAN/CoS nanocomposite membrane electrolyte for high-performance DSSC. Ionics 24, 4071–4080 (2018). https://doi.org/10.1007/s11581-018-2540-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-018-2540-4

Keywords

Navigation