pp 1–15 | Cite as

Study of biopolymer I-carrageenan with magnesium perchlorate

  • S. Shanmuga Priya
  • M. Karthika
  • S. Selvasekarapandian
  • R. Manjuladevi
  • S. Monisha
Original Paper


The green revolution has led to the study of biopolymer for development of polymer electrolyte for electrochemical devices. Cellulose acetate, pectin, chitosan, and carrageenan are some of the biopolymers. Biopolymer-based membrane for proton conduction and lithium ion conduction have developed and characterized by different techniques. But the study of biopolymer based on Mg2+ ion is rare in literature. So, biopolymer based on I-carrageenan with magnesium has been studied. I-carrageenan biopolymer membrane with different concentration of magnesium perchlorate has been prepared by solution casting technique. Developed biopolymer membrane have been characterized by X-ray diffraction analysis (XRD), FTIR, differential scanning calorimetry (DSC), and AC impedance techniques. Pure I-carrageenan has shown a conductivity value of 5.90 × 10−5 S/cm. I-carrageenan membrane with 0.6 wt% of magnesium perchlorate has shown a conductivity of 2.18 × 10−3 S/cm. A primary Mg2+ ion battery has been constructed and its performance is studied. XRD has been undertaken to study the amorphous/crystalline nature of the sample. I-carrageenan with 0.6 wt% of magnesium membrane has shown highest amorphous nature. FTIR study confirms the complex formation between polymer and salt. AC impedance technique has been used to study the conductivity of the samples.


Biopolymer Magnesium salt XRD FTIR Conductivity analysis Mg-ion battery 


  1. 1.
    Arof AK, Shuhaimi NEA, Alias NA, Kufian MZ, Majid SR (2010) Application of chitosan/iota-carrageenan polymer electrolytes in electrical double layer capacitor (EDLC). J Solid State Electrochem 14:2145–2152CrossRefGoogle Scholar
  2. 2.
    Nur NF, Shyuan LK, Mohamad AB, Kadhum AAH (2013) Review on biopolymer membranes for fuel cell applications. Appl Mech Mater 291–294:614–617Google Scholar
  3. 3.
    Liang L, Ni R, Yang S, Mao S (2014) Carrageenan and its applications in drug delivery. CarbohydrPolym 103:1–11Google Scholar
  4. 4.
    Campo VL, Kawano DF, da Silva DB Jr, Carvalho I (2009) Carrageenans: biological properties, chemical modifications and structural analysis—a review. Carbohydr Polym 77:167–180CrossRefGoogle Scholar
  5. 5.
    Shuhaimi NEA, Alias NA, Majid SR, and Arof AK (2008) Electrical double layer capacitor with proton conducting κ-carrageenan chitosan electrolytes. Funct Mater Lett 1:195–201CrossRefGoogle Scholar
  6. 6.
    Ng CA, Camacho DH (2015) Polymer electrolyte system based on carrageenan-poly(3,4-ethylenedioxythiophene)(PEDOT)composite for dye sensitized solar cell. IOP Conf Ser: Mater Sci Eng 79:012020. CrossRefGoogle Scholar
  7. 7.
    Lefnaoui S, Moulai-Mostefa N (2014) Polyelectrolyte complex based on carboxymethyl-kappa-carrageenan and Eudragit RL 30D as prospective carriers for sustained drug delivery. Chem Eng Res Des 97:165–174CrossRefGoogle Scholar
  8. 8.
    Rudhziah S, Rani MSA, Ahmad A, Mohamed NS, and Kaddami H (2015) Potential of blend of kappa-carrageenan and cellulose derivatives for green polymer electrolyte application. Ind Crop Prod 72:133–141CrossRefGoogle Scholar
  9. 9.
    Karthikeyan S, Selvasekarapandian S, Premalatha M, Monisha S, Boopathi G, Aristatil G, Arun A, Madeswaran S (2017) Proton-conducting I-carrageenan-based biopolymer electrolyte for fuel cell application. Ionics 23:2775–2780CrossRefGoogle Scholar
  10. 10.
    Moniha V, Alagar M, Selvasekarapandian S, Boopathi G (2018) Conductive bio polymer electrolyte iota carrageenan with ammonium nitrate for application in electrochemical devices. Non-Cryst Solids 481:424–434CrossRefGoogle Scholar
  11. 11.
    Pandey GP, Agrawal RC, Hashmi SA (2011) Magnesium ion conducting gel polymer electrolytes dispersed with fumed silica for rechargeable magnesium battery application. J Solid State Electrochem 15(10):2253–2264CrossRefGoogle Scholar
  12. 12.
    Venkata Narayanan NS, Ashok Raj BV, Sampath S (2009) Magnesium ion conducting, room temperature molten electrolytes. Electrochem Commun 11:2027–2031CrossRefGoogle Scholar
  13. 13.
    Deog Yoo H, Shterenberg I, Gofer Y, Gershinsky G, Pour N, Aurbach D (2013) Mg rechargeable batteries: an on-going challenge. Energy Environ Sci 6:2265–2279CrossRefGoogle Scholar
  14. 14.
    Kumar Y, Hashmi SA, Pandey GP (2011) Ionic liquid mediated magnesium ion conduction in poly(ethylene oxide) based polymer electrolyte. Electrochim Acta 56:3864–3873CrossRefGoogle Scholar
  15. 15.
    Mangalam R, Thamilselvan M, Selvasekarapandian S, Jayakumar S, Manjuladevi R (2017) Polyvinyl pyrrolidone/Mg(ClO4)2 solid polymer electrolyte: structural and electrical studies. Ionics 23:2837–2843CrossRefGoogle Scholar
  16. 16.
    Chen J, Peng T, Fan K, Xia J (2011) Iodine-free quasi solid-state dye-sensitized solar cells based on ionic liquid and alkali salt. J Mater Chem 21:16448–16452CrossRefGoogle Scholar
  17. 17.
    Agarwalaa S, Thummalakunta LNSA, Cook CA, Peh CKN, Wong ASW, Ke L, Ho GW (2011) Co-existence of LiI and KI in filler free, quasi-solid-state electrolyte for efficient and stable dye sensitized solar cell. J Power Sources 196:1651–1656CrossRefGoogle Scholar
  18. 18.
    Sharma A, Bhat S, Vishnoi T, Nayak V, Kumar A (2013) Three dimensional super macroporous carrageenan-gelatin cryogel matrix for tissue engineering applications. BioMed Res Int.
  19. 19.
    Rahman MYA, Ahmad A, Lee TK, Farina Y, Dahlan HM (2012) LiClO4 salt concentration effect on the properties of PVC-modified low molecular weight LENR50-based solid polymer electrolyte. J Appl Polym Sci 124:2227–2233CrossRefGoogle Scholar
  20. 20.
    Hodge RM, Edward GH, Simon GP (1996) Water absorption and states of water in semi crystalline poly (vinyl alcohol) films. Polymer 37(8):1371–1376CrossRefGoogle Scholar
  21. 21.
    Monisha S, Mathavan T, Selvasekarapandian S, Milton Franklin Benial A, Premalatha M (2017) Preparation and characterization of cellulose acetate and lithium nitrate for advanced electrochemical devices. Ionics 23:2697–2706CrossRefGoogle Scholar
  22. 22.
    Martins JT, Cerqueira MA, Bourbon AI, Pinheiro AC, Souza BWS, Vicente AA (2012) Synergistic effects between k-carrageenan and locust bean gum on physicochemical properties of edible films made thereof. Food Hydrocoll 29:280–289CrossRefGoogle Scholar
  23. 23.
    Pereira L, Amado AM, Critchley AT, van de Velde F, Ribeiro-Claro PJA (2009) Identification of selected seaweed polysaccharides (phycocolloids) by vibrational spectroscopy (FTIR-ATR and FT-Raman). Food Hydrocoll 23(7):1903–1909CrossRefGoogle Scholar
  24. 24.
    Mishra R, Baskaran N, Ramakrishnan PA, Rao KJ (1998) Lithium ion conduction in extreme polymer in salt regime. Solid State Ionics 112(3):261–273CrossRefGoogle Scholar
  25. 25.
    Ramya CS, Selvasekarapandian S, Savitha T, Hirankumar G, Baskaran R, Bhuvaneswari MS, Angelo PC (2006) Conductivity and thermal behavior of proton conducting polymer electrolyte based on poly (N-vinyl pyrrolidone). EurPolym J 42(10):2672–2677Google Scholar
  26. 26.
    Kim C, Lee G, Liou K, Ryu KS, Kang SG, Chang SH (1999) Polymer electrolytes prepared by polymerizing mixtures of polymerizable PEO-oligomers, copolymer of PVDC and poly (acrylonitrile), and lithium triflate. Solid State Ionics 123:251–257CrossRefGoogle Scholar
  27. 27.
    Subba Reddy CV, Han X, Zhu Q-Y, Mai L-Q, Chen W (2006) Conductivity and discharge characteristics of (PVC + NaClO4) polymer electrolyte systems. Eur Polym J 42:3114–3120CrossRefGoogle Scholar
  28. 28.
    Selvalakshmi S, Vijaya N, Selvasekarapandian S and PremalathaM (2016) Biopolymer agar-agar doped with NH4SCN as solid polymer electrolyte for electrochemical cell application. J Appl Polym Sci.
  29. 29.
    Manjuladevi R, Thamilselvan M, Selvasekarapandian S, Mangalam R, Premalatha M, and Monisha S (2017) Mg-ion conducting blend polymer electrolyte based on poly (vinyl alcohol)-poly (acrylonitrile) with magnesium perchlorate. Solid State Ionics 308:90–100CrossRefGoogle Scholar
  30. 30.
    PaGcalsu V, Popescu V, Popescu GL, Dudescu MC, Borodi G, Dinescu AM, Moldovan M (2013) Obtaining and characterizing alginate/k-carrageenan hydrogel cross-linked with adipic dihydrazide. Adv Mater Sci Eng 2013:1–12Google Scholar
  31. 31.
    Vijaya N, Selvasekarapandian S, Hirankumar G, Karthikeyan S, Nithya H, Ramya CS, Prabu M (2012) Structural, vibrational, thermal, and conductivity studies on proton-conducting polymer electrolyte based on poly (N-vinylpyrrolidone). Ionics 18:91–99CrossRefGoogle Scholar
  32. 32.
    Lanfredi S, Saia PS, Lebullenger R, andHernandes AC (2002) Electric conductivity and relaxation in fluoride, fluorophosphate and phosphate glasses: analysis by impedance spectroscopy. Solid State Ionics 146(3):329–339CrossRefGoogle Scholar
  33. 33.
    Prado-Fernandez J, Rodriguez-Vazquez JA, Tojo E, Andrade JM (2003) JM quantitation of κ-, ι- and λ-carrageenans by mid infrared spectroscopy and PLS regression. Anal Chim Acta 480:23–37CrossRefGoogle Scholar
  34. 34.
    Rochas C, Lahaye M, Yaphe W (1986) Sulfate content of carrageenan and agar determined by infrared spectroscopy. Bot Mar 29:335–340CrossRefGoogle Scholar
  35. 35.
    Qian X, Gu N, Cheng Z, Yang X, Wang E, Dong S (2001) Impedance study of (PEO) 10 LiClO4–Al2O3 composite polymer electrolyte with blocking electrodes. Electrochim Acta 46:1829–1836CrossRefGoogle Scholar
  36. 36.
    Adachi K, Urakawa O (2002) Dielectric study of concentration fluctuations in concentrated polymer solutions. J. Non-Cryst Solids 667:307–310Google Scholar
  37. 37.
    Monisha S, Selvasekarapandian S, Mathavan T, Benial MF, Manoharan S, Karthikeyan S (2016) Preparation and characterization of biopolymer electrolyte based on cellulose acetate for potential applications in energy storage devices. J Mater Sci Mater Electron 27:9314–9324CrossRefGoogle Scholar
  38. 38.
    Ramesh S and Arof AK (2001) Ionic conductivity studies of plasticized poly(vinylchloride)polymer electrolytes. Mater Sci Eng B 85:11–15CrossRefGoogle Scholar
  39. 39.
    Kumar GG, Munichandraiah N (2002) Poly (methylmethacrylate)—magnesium triflate gel polymer electrolyte for solid state magnesium battery application. Electrochim Acta 47(7):1013–1022CrossRefGoogle Scholar
  40. 40.
    Manjuladevi R, Thamilselvan M, Selvasekarapandian S, Christopher Selvin P, Mangalam R, Monisha S (2017) Preparation and characterization of blend polymer electrolyte film based on poly(vinyl alcohol)-poly(acrylonitrile)/MgCl2 for energy storage devices. Ionics.
  41. 41.
    Jumaah FN, Mobaraka NN, Ahmad A, Ramli N (2013) Characterization of Ų-carrageenan and its derivative based green polymer electrolytes. AIP Conf Proc 1571:768CrossRefGoogle Scholar
  42. 42.
    Elsupikhe RF, Shameli K, Ahmad MB, Ibrahim NA, Zainudin N (2015) Green sonochemical synthesis of silver nanoparticles at varying concentrations of κ-carrageenan. Nanoscale Res Lett 10:302CrossRefGoogle Scholar
  43. 43.
    Brychcy E, Malik M, Drożdżewski P, Król Ż, Jarmoluk A (2015) Physicochemical and antibacterial properties of carrageenan and gelatine hydrosols and hydrogels incorporated with acidic electrolyzed water. Polymers 7(12):2638–2649CrossRefGoogle Scholar
  44. 44.
    Ramasamy Indumathy, Perunninakulath S, Parameswaran, Aiswarya CV, UnniNair B (2014) Bibenzimidazole containing mixed ligand cobalt(III) complex as a selective receptor for iodide. Polyhedron 75:22–29CrossRefGoogle Scholar
  45. 45.
    Miller FA, Wilkins CH (1952) Infrared spectra and characteristic frequencies of inorganic ions. Anal Chem 24(8):1253–1294CrossRefGoogle Scholar
  46. 46.
    Chopin T, Whalen E (1993) A new and rapid method for carrageenan identification by FTIR diffuse reflectance spectroscopy directly on dried, ground algal material. Carbohydr Res Res 246:51–59CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • S. Shanmuga Priya
    • 1
    • 2
  • M. Karthika
    • 1
  • S. Selvasekarapandian
    • 2
    • 3
  • R. Manjuladevi
    • 2
    • 4
  • S. Monisha
    • 2
    • 5
  1. 1.Department of PhysicsNGM CollegePollachiIndia
  2. 2.Materials Research CenterCoimbatoreIndia
  3. 3.Department of PhysicsBharathiar UniversityCoimbatoreIndia
  4. 4.Department of PhysicsSNS College of EngineeringCoimbatoreIndia
  5. 5.Department of PhysicsN.M.S.S. Vellaichamy Nadar CollegeMaduraiIndia

Personalised recommendations