Skip to main content
Log in

Conductivity or rheology? Tradeoff for competing properties in the fabrication of a gel polymer electrolyte based on chitosan-barbiturate derivative

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

Chitosan-barbiturate (Ch-Ba) derivative was synthesized to afford organosolubility. Attachment of Ba onto the Ch backbone was confirmed by 1H NMR with peaks at 8.2 and 11.1 ppm, and FTIR with bands at 1679 and 1739 cm−1 belonging to the Ba ring. This derivative was used as a host polymer in the preparation of gel polymer electrolytes. The components of the gel consist of tetrapropylammonium iodide (TPAI) as the salt, SiO2 nanofiller (NF) as the mechanical stabilizer, and dimethyl sulfoxide (DMSO) as the solvent. The necessary formulation required to produce the gel was studied using response surface models by means of artificial neural networks. Electrochemical and rheological behaviors were studied and the simulated model predicted conductivities were as high as 8.51 mS cm−1 while still maintaining a solid-like gel structure in the region where storage modulus dominated loss modulus, G″/G′ < 1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Di Noto V, Lavina S, Giffin GA, Negro E, Scrosati B (2011) Polymer electrolytes: present, past and future. Electrochim Acta 57:4–13. https://doi.org/10.1016/j.electacta.2011.08.048

    Article  CAS  Google Scholar 

  2. Wu J, Lan Z, Lin J, Huang M, Huang Y, Fan L, Luo G (2015) Electrolytes in dye-sensitized solar cells. Chem Rev 115(5):2136–2173. https://doi.org/10.1021/cr400675m

    Article  CAS  PubMed  Google Scholar 

  3. Varshney P, Gupta S (2011) Natural polymer-based electrolytes for electrochemical devices: a review. Ionics 17(6):479–483. https://doi.org/10.1007/s11581-011-0563-1

    Article  CAS  Google Scholar 

  4. Azzahari AD, Yusuf SNF, Selvanathan V, Yahya R (2016) Artificial neural network and response surface methodology modeling in ionic conductivity predictions of phthaloylchitosan-based gel polymer electrolyte. Polymers 8(2):22. https://doi.org/10.3390/polym8020022

    Article  CAS  Google Scholar 

  5. Yusuf SNF, Azzahari AD, Yahya R, Majid SR, Careem MA, Arof AK (2016) From crab shell to solar cell: a gel polymer electrolyte based on N-phthaloylchitosan and its application in dye-sensitized solar cells. RSC Adv 6(33):27714–27724. https://doi.org/10.1039/C6RA04188D

    Article  CAS  Google Scholar 

  6. Yusuf SNF, Azzahari AD, Selvanathan V, Yahya R, Careem MA, Arof AK (2017) Improvement of N-phthaloylchitosan based gel polymer electrolyte in dye-sensitized solar cells using a binary salt system. Carbohydrate Polymers 157(Supplement C):938–944. https://doi.org/10.1016/j.carbpol.2016.10.032

    Article  CAS  PubMed  Google Scholar 

  7. Selvanathan V, Azzahari AD, Abd Halim AA, Yahya R (2017) Ternary natural deep eutectic solvent (NADES) infused phthaloyl starch as cost efficient quasi-solid gel polymer electrolyte. Carbohydrate Polymers 167(Supplement C):210–218. https://doi.org/10.1016/j.carbpol.2017.03.023

    Article  CAS  PubMed  Google Scholar 

  8. Selvalakshmi S, Vijaya N, Premalatha M, Monisha S (2015) Investigation of agar-based solid polymer electrolyte. Indian J Appl Res 5(6)

  9. Bella F, Nair JR, Gerbaldi C (2013) Towards green, efficient and durable quasi-solid dye-sensitized solar cells integrated with a cellulose-based gel-polymer electrolyte optimized by a chemometric DoE approach. RSC Adv 3(36):15993–16001. https://doi.org/10.1039/C3RA41267A

    Article  CAS  Google Scholar 

  10. Xiao S, Wang F, Yang Y, Chang Z, Wu Y (2014) An environmentally friendly and economic membrane based on cellulose as a gel polymer electrolyte for lithium ion batteries. RSC Adv 4(1):76–81

    Article  CAS  Google Scholar 

  11. Rizwan M, Yahya R, Hassan A, Yar M, Azzahari AD, Selvanathan V, Sonsudin F, Abouloula C (2017) pH sensitive hydrogels in drug delivery: brief history, properties, swelling, and release mechanism, material selection and applications. Polymers 9(4):137. https://doi.org/10.3390/polym9040137

    Article  CAS  Google Scholar 

  12. Pillai CKS, Paul W, Sharma CP (2009) Chitin and chitosan polymers: chemistry, solubility and fiber formation. Prog Polym Sci 34(7):641–678. https://doi.org/10.1016/j.progpolymsci.2009.04.001

    Article  CAS  Google Scholar 

  13. Rizwan M, Yahya R, Hassan A, Yar M, Anita Omar R, Azari P, Azzahari AD, Selvanathan V, Rageh Al-Maleki A, Venkatraman G (2017) Synthesis of a novel organosoluble, biocompatible, and antibacterial chitosan derivative for biomedical applications. Journal of Applied Polymer Science:45905-n/a. doi:https://doi.org/10.1002/app.45905

    Article  Google Scholar 

  14. Shahzad S, Shahzadi L, Mahmood N, Siddiqi SA, Rauf A, Manzoor F, Chaudhry AA, Rehman IU, Yar M (2016) A new synthetic methodology for the preparation of biocompatible and organo-soluble barbituric- and thiobarbituric acid based chitosan derivatives for biomedical applications. Mater Sci Eng C 66:156–163. https://doi.org/10.1016/j.msec.2016.04.056

    Article  CAS  Google Scholar 

  15. Pena-Pereira F, Kloskowski A, Namiesnik J (2015) Perspectives on the replacement of harmful organic solvents in analytical methodologies: a framework toward the implementation of a generation of eco-friendly alternatives. Green Chem 17(7):3687–3705. https://doi.org/10.1039/C5GC00611B

    Article  CAS  Google Scholar 

  16. Guo Y, Li F, Zhu H, Li G, Huang J, He W (2016) Leaching lithium from the anode electrode materials of spent lithium-ion batteries by hydrochloric acid (HCl). Waste Management 51(Supplement C):227–233. https://doi.org/10.1016/j.wasman.2015.11.036

    Article  CAS  PubMed  Google Scholar 

  17. Ketabi S, Lian K (2013) Effect of SiO2 on conductivity and structural properties of PEO–EMIHSO4 polymer electrolyte and enabled solid electrochemical capacitors. Electrochimica Acta 103(Supplement C):174–178. https://doi.org/10.1016/j.electacta.2013.04.053

    Article  CAS  Google Scholar 

  18. Günther F, Fritsch S (2010) Neuralnet: training of neural networks. R J 2(1):30–38

    Google Scholar 

  19. Hagan M, Demuth H, Beale M, De Jesus O (2014) Neural network design (2nd Edition). Martin Hagan

  20. Hagan MT, Menhaj MB (1994) Training feedforward networks with the Marquardt algorithm. IEEE Trans Neural Netw 5(6):989–993. https://doi.org/10.1109/72.329697

    Article  CAS  PubMed  Google Scholar 

  21. Ibrahim O (2013) A comparison of methods for assessing the relative importance of input variables in artificial neural networks. J Appl Sci Res 9(11):5692–5700

    Google Scholar 

  22. Linford RG (1988) Solid state ionics devices. World Scientific, Singapore

    Google Scholar 

  23. Arof AK, Amirudin S, Yusof SZ, Noor IM (2014) A method based on impedance spectroscopy to determine transport properties of polymer electrolytes. Phys Chem Chem Phys 16(5):1856–1867. https://doi.org/10.1039/C3CP53830C

    Article  CAS  PubMed  Google Scholar 

  24. Stoppe N, Horn R (2017) How far are rheological parameters from amplitude sweep tests predictable using common physicochemical soil properties? J Phys Conf Ser 790(1):012032

    Article  Google Scholar 

  25. Mezger TG (2006) The rheology handbook: for users of rotational and oscillatory rheometers. Vincentz Network

  26. Kavanagh GM, Ross-Murphy SB (1998) Rheological characterisation of polymer gels. Prog Polym Sci 23(3):533–562. https://doi.org/10.1016/S0079-6700(97)00047-6

    Article  CAS  Google Scholar 

  27. Kawashima S, Chaouche M, Corr DJ, Shah SP (2014) Influence of purified attapulgite clays on the adhesive properties of cement pastes as measured by the tack test. Cem Concr Compos 48(Supplement C):35–41. https://doi.org/10.1016/j.cemconcomp.2014.01.005

    Article  CAS  Google Scholar 

  28. Bandara TMWJ, Jayasundara WJMJSR, Dissanayake MAKL, Furlani M, Albinsson I, Mellander BE (2013) Effect of cation size on the performance of dye sensitized nanocrystalline TiO2 solar cells based on quasi-solid state PAN electrolytes containing quaternary ammonium iodides. Electrochim Acta 109:609–616. https://doi.org/10.1016/j.electacta.2013.07.089

    Article  CAS  Google Scholar 

  29. Dissanayake MAKL, Thotawatthage CA, Senadeera GKR, Bandara TMWJ, Jayasundera WJMJSR, Mellander BE (2012) Efficiency enhancement by mixed cation effect in dye-sensitized solar cells with PAN based gel polymer electrolyte. J Photochem Photobiol A Chem 246:29–35. https://doi.org/10.1016/j.jphotochem.2012.06.023

    Article  CAS  Google Scholar 

  30. Hassan HC, Abidin ZHZ, Careem MA, Arof AK (2014) Chlorophyll as sensitizer in I/I3 -based solar cells with quasi-solid-state electrolytes. High Performance Polymers 26(6):647–652. https://doi.org/10.1177/0954008314540310

    Article  CAS  Google Scholar 

  31. Arof AK, Naeem M, Hameed F, Jayasundara WJMJSR, Careem MA, Teo LP, Buraidah MH (2014) Quasi solid state dye-sensitized solar cells based on polyvinyl alcohol (PVA) electrolytes containing I-/I3- redox couple. Opt Quant Electron 46(1):143–154. https://doi.org/10.1007/s11082-013-9723-z

    Article  CAS  Google Scholar 

  32. Arof AK, Aziz MF, Noor MM, Careem MA, Bandara LRAK, Thotawatthage CA, Rupasinghe WNS, Dissanayake MAKL (2014) Efficiency enhancement by mixed cation effect in dye-sensitized solar cells with a PVdF based gel polymer electrolyte. Int J Hydrog Energy 39(6):2929–2935. https://doi.org/10.1016/j.ijhydene.2013.07.028

    Article  CAS  Google Scholar 

  33. Dissanayake MAKL, Jayathissa R, Seneviratne VA, Thotawatthage CA, Senadeera GKR, Mellander BE (2014) Polymethylmethacrylate (PMMA) based quasi-solid electrolyte with binary iodide salt for efficiency enhancement in TiO2 based dye sensitized solar cells. Solid State Ionics 265:85–91. https://doi.org/10.1016/j.ssi.2014.07.019

    Article  CAS  Google Scholar 

Download references

Funding

The authors gratefully acknowledge the financial support for this project from the University of Malaya under the University Research Grant number PG028-2014A. A.D. Azzahari would also like to thank the Bright Spark fellowship (BSP/APP/1903/2013).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rosiyah Yahya.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

ESM 1

(DOC 196 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Azzahari, A.D., Selvanathan, V., Rizwan, M. et al. Conductivity or rheology? Tradeoff for competing properties in the fabrication of a gel polymer electrolyte based on chitosan-barbiturate derivative. Ionics 24, 3015–3025 (2018). https://doi.org/10.1007/s11581-018-2515-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-018-2515-5

Keywords

Navigation