Skip to main content

Advertisement

Log in

TiN synergetic with micro-/mesoporous carbon for enhanced performance lithium–sulfur batteries

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

Porous carbon has high specific area and total pore volume but weak interaction with dissolved polysulfides. Conductive polar metal compound has strong chemical adsorption of polysulfides but difficult to attain high porosity to encapsulate sulfur series. Instead of efforts on the cathode, we prepared a composite made up of titanium nitride and three-dimensional micro-/mesoporous carbon by a facile and economic way. This composite was coated on the commercial Celgard separator as a polysulfide interceptor to enhance the performances of lithiumsulfur battery. The strategy exerts the synergetic merits of porosity, chemical adsorption, physical interception, and benign conductivity. The hierarchical carbon possesses a high specific surface area of 1571 m2/g and total pore volume of 1.56 cm3/g with the pore size centered at 1.27 and 5.30 nm. TiN can immobilize sulfur intermediates by strong chemical interaction. In addition, excellent electrical conductivity of TiN facilitates redox kinetics. The pure sulfur cathode with the modified separator delivers high initial capacity of 1130 mAh/g at 1 C (1 C = 1675 mAh/g) and retains 500 mAh/g after 400 cycles, demonstrating superior cycling stability, rate capabilities. Discharge-charge profiles, electrochemical impedance spectrum, and cyclic voltammetry curves of batteries were investigated to support the prominent electrochemistry of the material. Further analysis and observation on the modified separator disassembled from the coin cells after cycling were conducted to probe the evolution and reaction mechanism of the coating.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Bruce PG, Scrosati B, Tarascon JM (2008) Nanomaterials for rechargeable lithium batteries. Angew Chem Int Edit 47(16):2930–2946

    Article  CAS  Google Scholar 

  2. Bruce PG, Freunberger SA, Hardwick LJ, Tarascon JM (2011) Li-O2 and LiS batteries with high energy storage. Nat Mater 11(1):19–29

    Article  Google Scholar 

  3. Lochala J, Liu D, Wu B, Robinson C, Xiao J (2017) Research progress towards the practical applications of lithium sulfur (LiS) batteries. Acs Appl Mater Inter 9(29):24407–24421

    Article  CAS  Google Scholar 

  4. Manthiram A, Fu Y, Chung SH, Zu C, Su YS (2014) Rechargeable lithium-sulfur batteries. Chem Rev 114(23):11751–11787

    Article  CAS  Google Scholar 

  5. Yang Y, Zheng G, Cui Y (2013) Nanostructured sulfur cathodes. Chem Soc Rev 42(7):3018–3032

    Article  CAS  Google Scholar 

  6. Wang J, Wu Y, Shi Z, Wu C (2014) Mesoporous carbon with large pore volume and high surface area prepared by a co-assembling route for lithium-sulfur batteries. Electrochim Acta 144:307–314

    Article  CAS  Google Scholar 

  7. Liang J, Sun ZH, Li F, Cheng HM (2016) Carbon materials for Li–S batteries: functional evolution and performance improvement. Energ Stor Mater 2:76–106

    Google Scholar 

  8. Raiß C, Peppler K, Janek J, Adelhelm P (2014) Pitfalls in the characterization of sulfur/carbon nanocomposite materials for lithium–sulfur batteries. Carbon 79(1):245–255

    Article  Google Scholar 

  9. Yang X, Zhang L, Zhang F, Huang Y, Che Y (2014) Sulfur-infiltrated graphene-based layered porous carbon cathodes for high-performance lithium–sulfur batteries. ACS Nano 8(5):5208–5215

    Article  CAS  Google Scholar 

  10. Saravanan K, Kalaiselvi N (2015) Nitrogen containing bio-carbon as a potential anode for lithium batteries. Carbon 81(1):43–53

    Article  CAS  Google Scholar 

  11. Zhang B, Qin X, Li GR, Gao XP (2015) Enhancement of long stability of sulfur cathode by encapsulating sulfur into micropores of carbon spheres. Energy Environ Sci 3(10):1531–1537

    Article  Google Scholar 

  12. Zhang Z, Li Q, Zhang K, Lai Y, Li J (2015) Micro-nano structure composite cathode material with high sulfur loading for advanced lithium–sulfur batteries. Electrochim Acta 152:53–60

    Article  CAS  Google Scholar 

  13. Xin S, Gu L, Zhao NH, Yin YX, Zhou LJ, Guo YG (2012) Smaller sulfur molecules promise better lithium-sulfur batteries. J Am Chem Soc 134(45):18510–18513

    Article  CAS  Google Scholar 

  14. Balach J, Jaumann T, Klose M, Oswald S, Eckert J, Giebeler L (2015) Functional mesoporous carbon-coated separator for long-life, high-energy lithium-sulfur batteries. Adv Funct Mater 25(33):5285–5291

    Article  CAS  Google Scholar 

  15. Park MS, Bo OJ, Kim TJ, Kim S, Kim KJ, Yu JS (2014) Disordered mesoporous carbon as polysulfide reservoir for improved cyclic performance of lithium–sulfur batteries. Carbon 68(3):265–272

    Article  CAS  Google Scholar 

  16. Zhang Y, Zhao Y, Konarov A, Li Z, Chen P (2015) Effect of mesoporous carbon microtube prepared by carbonizing the poplar catkin on sulfur cathode performance in li/s batteries. J Alloy Compd 619:298–302

    Article  CAS  Google Scholar 

  17. Li X, Cao Y, Qi W, Saraf LV, Xiao J, Nie Z (2011) Optimization of mesoporous carbon structures for lithium–sulfur battery applications. J Mater Chem 21(41):16603–16610

    Article  CAS  Google Scholar 

  18. Qu Y, Zhang Z, Zhang X, Ren G, Wang X, Lai Y (2014) Synthesis of hierarchical porous honeycomb carbon for lithium-sulfur battery cathode with high rate capability and long cycling stability. Electrochima Acta 137(8):439–446

    Article  CAS  Google Scholar 

  19. Yu LH, Brun N, Sakaushi K, Eckert J, Titirici MM (2013) Hydrothermal nanocasting: synthesis of hierarchically porous carbon monoliths and their application in lithium–sulfur batteries. Carbon 61(51):245–253

    Article  CAS  Google Scholar 

  20. Wang F, Song R, Song H, Chen X, Zhou J, Ma Z (2015) Simple synthesis of novel hierarchical porous carbon microspheres and their application to rechargeable lithium-ion batteries. Carbon 81(1):314–321

    Article  CAS  Google Scholar 

  21. Evers S, Yim T, Nazar LF (2012) Understanding the nature of absorption/adsorption in nanoporous polysulfide sorbents for the li–s battery. J Phys Chem C 116(37):19653–19658

    Article  CAS  Google Scholar 

  22. Liang G, Wu J, Qin X, Liu M, Li Q, He YB (2016) Ultrafine TiO2 decorated carbon nanofibers as multi-functional interlayer for high performance lithium-sulfur battery. Acs Appl Mater Inter 8(35):23105–23113

    Article  CAS  Google Scholar 

  23. Chao L, Zhu H, Wei L, Fei S, Fan X, Dai J (2017) Atomic-layer-deposition functionalized carbonized mesoporous wood fiber for high sulfur loading lithium sulfur batteries. Acs Appl Mater Inter 9(17):14801–14807

    Article  Google Scholar 

  24. Jiangxuan S, Gordin ML, Terrence X, Shuru C, Zhaoxin Y, Hiesang S (2015) Strong lithium polysulfide chemisorption on electroactive sites of nitrogen-doped carbon composites for high-performance lithium-sulfur battery cathodes. Angew Chem Int Edit 54(14):4325–4329

    Article  Google Scholar 

  25. Ponraj R, Kannan AG, Ahn JH, Kim DW (2016) Improvement of cycling performance of lithium-sulfur batteries by using magnesium oxide as a functional additive for trapping lithium polysulfide. Acs Appl Mater Inter 8(6):4000–4006

    Article  CAS  Google Scholar 

  26. Liang X, Hart C, Pang Q, Garsuch A, Weiss T, Nazar LF (2015) A highly efficient polysulfide mediator for lithium-sulfur batteries. Nat Commun 6:5682

    Article  Google Scholar 

  27. Peng HJ, Zhang Q (2015) Designing host materials for sulfur cathodes: from physical confinement to surface chemistry. Angew Chem Int Edit 54(38):11018–11020

    Article  CAS  Google Scholar 

  28. Pang Q, Kundu D, Cuisinier M, Nazar LF (2014) Surface-enhanced redox chemistry of polysulphides on a metallic and polar host for lithium-sulphur batteries. Nat Commun 5:4759

    Article  CAS  Google Scholar 

  29. Tao X, Wang J, Ying Z, Cai Q, Zheng G, Gan Y (2014) Strong sulfur binding with conducting magnéli-phase TinO2n-1 nanomaterials for improving lithium-sulfur batteries. Nano Lett 14(9):5288–5294

    Article  CAS  Google Scholar 

  30. Li X, Lu Y, Hou Z, Zhang W, Zhu Y, Qian Y (2016) SnS2-compared to SnO2-stabilized S/C composites toward high-performance lithium sulfur batteries. Acs Appl Mater Inter 8(30):19550–19557

    Article  CAS  Google Scholar 

  31. Yuan Z, Peng HJ, Hou TZ, Huang JQ, Chen CM, Wang DW (2016) Powering lithium–sulfur battery performance by propelling polysulfide redox at sulfiphilic hosts. Nano Lett 16(1):519–527

    Article  CAS  Google Scholar 

  32. Peng HJ, Zhang G, Chen X, Zhang ZW, Xu WT, Huang JQ (2016) Enhanced electrochemical kinetics on conductive polar mediators for lithium-sulfur batteries. Angew Chem Int Edit 128(42):13184–13189

    Article  Google Scholar 

  33. Milosv I, Strehblow HH, Navinsek B, Metikos-Hukovic M (1995) Electrochemical and thermal oxidation of tin coatings studied by XPS. Surf Interface Anal 23(7–8):529–539

    Article  Google Scholar 

  34. Wen ZH, Cui SM, Pu HH, Mao S, Yu K, Feng XL, Chen JH (2011) Metal nitride/graphene nanohybrids: general synthesisand multifunctional titanium nitride/graphene electrocatalyst. Adv Mater 23(45):5445–5450

    Article  CAS  Google Scholar 

  35. Kohandehghan A, Kalisvaart P, Cui K, Kupsta M, Memarzadeh E, Mitlin D (2013) Silicon nanowire lithium-ion battery anodes with ald deposited tin coatings demonstrate a major improvement in cycling performance. J Mater Chem A 1(41):12850–12861

    Article  CAS  Google Scholar 

  36. Cui Z, Zu C, Zhou W, Manthiram A, Goodenough JB (2016) Mesoporous titanium nitride-enabled highly stable lithium–sulfur batteries. Adv Mater 28(32):6926–6931

    Article  CAS  Google Scholar 

  37. Hao Z, Yuan L, Chen C, Xiang J, Li Y, Huang Z (2016) TiN as a simple and efficient polysulfide immobilizer for lithium-sulfur batteries. J Mater Chem A 4(45):17711–17717

    Article  CAS  Google Scholar 

  38. Chen Z, Du XL, He JB, Li F, Wang Y, Li YL, Li B, Xin S (2017) Porous coconut shell carbon offering high retention and deep lithiation of sulfur for lithium–sulfur batteries. Acs Appl Mater Inter 9(39):33855–33862

    Article  CAS  Google Scholar 

  39. Xu DW, Xin S, You Y et al (2016) Built-in carbon nanotube network inside a biomass-derived hierarchically porous carbon to enhance the performance of the sulfur cathode in a Li–S battery. Chem Aust 2(7):712–718

    CAS  Google Scholar 

  40. Du XL, You Y, Yan Y et al (2016) Conductive carbon network inside a sulfur-impregnated carbon sponge: a bioinspired high-performance cathode for Li–S battery. Acs Appl Mater Inter 8(34):22261–22269

    Article  CAS  Google Scholar 

  41. Xin S, You Y, Li HQ, Zhou WD, Li YT, Xue LG, Cong HP (2016) Graphene sandwiched by sulfur-confined mesoporous carbon nanosheets: a kinetically stable cathode for Li–S batteries. Acs Appl Mater Inter 8(49):33704–33711

    Article  CAS  Google Scholar 

  42. You Y, Zeng W, Yin YX, Zhang J, Yang CP, Zhu Y, Guo YG (2015) Hierarchically micro/mesoporous activated graphene with a large surface area for high sulfur loading in Li-S batterie. J Mater Chem A 3(9):4799–4802

    Article  CAS  Google Scholar 

  43. Huang JQ, Zhang Q, Wei F (2015) Multi-functional separator/interlayer system for high-stable lithium-sulfur batteries: progress and prospects. Energy Storage Mater 1:127–145

    Article  Google Scholar 

  44. Xu Q, Hu GC, Bi HL, Xiang HF (2015) A trilayer carbon nanotube/Al2O3/polypropylene separator for lithium–sulfur batteries. Ionics 21(4):981–986

    Article  CAS  Google Scholar 

  45. Peng HJ, Zhang ZW, Huang JQ, Zhang G, Xie J, Xu WT, Shi JL, Chen X, Cheng XB, Zhang Q (2016) A cooperative interface for highly efficient lithium-sulfur batteries. Adv Mater 28(43):9551–9558

    Article  CAS  Google Scholar 

  46. Kong L, Peng HJ, Huang JQ, Zhu W, Zhang G, Zhang ZW, Zhai PY, Sun P, Xie J, Zhang Q (2017) Beaver-dam-like membrane: a robust and sulphifilic MgBO2(OH)/CNT/PP nest separator in Li–S batteries. Energy Storage Mater 8:153–160

    Article  Google Scholar 

  47. Du Z, Guo C, Wang L et al (2017) Atom-thick interlayer made of CVD-grown graphene film on separator for advanced lithium-sulfur batteries. Acs Appl Mater Inter 9(50):43696–43703

    Article  CAS  Google Scholar 

  48. Dresselhaus MS, Eklund PC (2000) Phonons in carbon nanotubes. Adv Phys 49(6):705–814

    Article  CAS  Google Scholar 

  49. Li Y, Wang J, Li X, Liu J, Geng D, Yang J (2011) Nitrogen-doped carbon nanotubes as cathode for lithium–air batteries. Electrochem Commun 13(7):668–672

    Article  CAS  Google Scholar 

  50. Zhu YQ, Zhang L, Chen XY, Xiao ZH, Zhang ZJ (2015) Notable improvement of capacitive performance of highly nanoporouscarbon materials simply by a redox additive electrolyte of p-nitroaniline. J Power Sources 299:629–639

    Article  CAS  Google Scholar 

  51. Tran C, Yang XQ, Qu D (2010) Investigation of the gas-diffusion-electrode used as lithium/air cathode in non-aqueous electrolyte and the importance of carbon material porosity. J Power Sources 195(7):2057–2063

    Article  CAS  Google Scholar 

  52. Zhang SS (2013) Liquid electrolyte lithium/sulfur battery: fundamental chemistry, problems, and solutions. J Power Sources 231(2):153–162

    Article  CAS  Google Scholar 

  53. Hagen M, Fanz P, Tübke J (2014) Cell energy density and electrolyte/sulfur ratio in Li–S cells. J Power Sources 264(264):30–34

    Article  CAS  Google Scholar 

  54. Zhang Z, Wang G, Lai Y, Li J (2016) A freestanding hollow carbon nanofiber/reduced graphene oxide interlayer for high-performance lithium–sulfur batteries. J Alloy Compound 663:501–506

    Article  CAS  Google Scholar 

  55. Elazari R, Salitra G, Garsuch A, Panchenko A, Aurbach D (2011) Sulfur-impregnated activated carbon fiber cloth as a binder-free cathode for rechargeable LiS batteries. Adv Mater 23(47):5641–5644

    Article  CAS  Google Scholar 

  56. Buzio R, Gerbi A, Uttiya S, Bernini C, Del Rio Castillo AE, Palazon F (2017) Ultralow friction of ink-jet printed grapheme flakes. Nano 9:76112–77624

    Google Scholar 

  57. Zhou T, Lv W, Li J, Zhou G, Zhao Y, Fan S (2017) Twinborn TiO2–TiN heterostructures enabling smooth trapping–diffusion–conversion of polysulfides towards ultralong life lithium–sulfur batteries. Energy Environ Sci 10(7):1694–1703

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the support of the “Strategic Priority Research Program” of the Chinese Academy of Science (No. XDA03040000), and the “Student’s Platform for Innovation and Entrepreneurship Training Program” of the Ministry of Education of China (No. 201710359071).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heqin Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tang, Q., Li, H., Pan, Y. et al. TiN synergetic with micro-/mesoporous carbon for enhanced performance lithium–sulfur batteries. Ionics 24, 2983–2993 (2018). https://doi.org/10.1007/s11581-018-2510-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-018-2510-x

Keywords

Navigation