Skip to main content
Log in

Study on the effect of PEG in ionic transport for CMC-NH4Br-based solid polymer electrolyte

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

The present study investigates the ion transport properties and structural analysis of plasticized solid polymer electrolytes (SPEs) based on carboxymethyl cellulose (CMC)-NH4Br-PEG. The SPE system was successfully prepared via solution casting and has been characterized by using electrical impedance spectroscopy (EIS), Fourier transform infrared (FTIR) spectroscopy, and x-ray diffraction (XRD) technique. The highest conductivity of the SPE system at ambient temperature (303 K) was found to be 1.12 × 10−4 S/cm for un-plasticized sample and 2.48 × 10−3 S cm−1 when the sample is plasticized with 8 wt% PEG. Based on FTIR analysis, it shows that interaction had occurred at O–H, C=O, and C–O moiety from CMC when PEG content was added. The ionic conductivity tabulation of SPE system was found to be influenced by transport properties and amorphous characteristics as revealed by IR deconvolution method and XRD analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Fenton DE, Parker JM, Wright PV (1973) Complexes of alkali metal ions with poly(ethylene oxide). Polymer 14:589–594

    Article  CAS  Google Scholar 

  2. Liang YH, Wang CC, Chen CY (2008) Synthesis and characterization of a new network polymer electrolyte containing polyether in the main chains and side chains. Eur Polym J 44:2376–2384

    Article  CAS  Google Scholar 

  3. Wright PV (1975) Electrical conductivity in ionic complexes of poly (ethylene oxide). Br Polym J 7:319–327

    Article  CAS  Google Scholar 

  4. Armand MB, Chabagno JM, Duclot MJ (1978) Poly-ethers as solid electrolytes. In Proceedings of the second international meeting on solid electrolytes, St. Andrews Scotland. 20–22

  5. Shukur MF, Kadir MFZ (2015) Hydrogen ion conducting starch- chitosan based electrolyte for application in electrochemical devices. Elecrochim Acta 158:152–165

    Article  CAS  Google Scholar 

  6. Khanmirzaei MH, Ramesh S (2014) Studies on biodegradable polymer electrolyte rice starch (RS) complexed with lithium oxide. Ionics 20:691–695

    Article  CAS  Google Scholar 

  7. Majid SR, Idris NH, Hassan MF, Winnie T, Khiar ASA, Arof AK (2005) Transport studies on filler-doped chitosan based polymer electrolyte. Ionics 11:451–455

    Article  CAS  Google Scholar 

  8. Jumaah FN, Mobarak NN, Ahmad A, Ghani MA, Rahman MYA (2015) Derivative of iota-carrageenan as solid polymer electrolyte. Ionics 21:1311–1320

    Article  CAS  Google Scholar 

  9. Abdullah OG, Aziz SB, Rasheed MA (2018) Incorporation of NH4NO3 into MC-PVA blend-based polymer to prepare proton-conducting polymer electrolyte films. Ionics 24:777–785

    Article  CAS  Google Scholar 

  10. Azlan AL, Isa MIN (2012) Proton conducting biopolymer electrolytes based on tapioca starch-NH4NO3. Solid State Sci Technol Lett 18:124–129

    Google Scholar 

  11. Hucheng Z, Xiopeng X, Jianji W, Hanqing W (2003) FT-IR investigation of ion association in PEO-MSCN (M=Na, K) polymer electrolytes. Solid State Ionics 164:73–79

    Article  Google Scholar 

  12. Ramli MA, Chai MN, Isa MIN (2013) Influence of propylene carbonate as a plasticizer in CMC-OA based biopolymer electrolytes: conductivity and electrical study. Adv Mater Res 802:184–188

    Article  Google Scholar 

  13. Samsudin AS, Isa MIN (2012) Characterization of carboxy methylcellulose doped with DTAB as new types of biopolymer electrolytes. Bull Mater Sci 35:1123–1131

    Article  CAS  Google Scholar 

  14. Ahmad Z, Isa MIN (2012) Ionics conduction via correlated barrier hoping mechanisms in CMC-SA solid biopolymer electrolytes. Int J Latest Res Sci Technol 1:70–75

    Google Scholar 

  15. Anji RP, Ranveer K (2011) Impedance spectroscopy and FTIR studies of PEG-based polymer electrolytes. E-J Chem 8:347–353

    Article  Google Scholar 

  16. Bhide A, Hariharan K (2007) Ionic transport studies on (PEO)6:NaPO3 polymer electrolyte plasticized with PEG400. Eur Polym J 43:4253–4270

    Article  CAS  Google Scholar 

  17. Woo HJ, Majid SR, Arof AK (2013) Effect of ethylene carbonate on proton conducting polymer electrolyte based on poly(ε-caprolactone) (PCL). Solid State Ionics 252:102–108

    Article  CAS  Google Scholar 

  18. Gupta S (2017) Varshney PK (2017) effect plasticizer concentration on structural and electrical properties of hydroxyethyl cellulose (HEC)-based polymer electrolyte. Ionics 23:1613–1617

    Article  CAS  Google Scholar 

  19. Kumar R, Sharma S, Pathak D, Dhiman N, Arora N (2017) Ionic conductivity, FTIR and thermal studies of nano-composite plasticized proton conducting polymer electrolytes. Solid State Ionics 305:57–62

    Article  CAS  Google Scholar 

  20. Jung SS, Kim KW, Ahn HJ, Ahn JH (2002) Preparation and characterization of plasticized polymer electrolytes based on the PVdF-HFP copolymer for lithium/sulfur battery. J Mater Sci Mater Electron 13:727–733

    Article  Google Scholar 

  21. Ahmad A, Isa KBM, Osman Z (2011) Conductivity and structural studies of plasticized polyacrylonitrile (PAN)—lithium triflate polymer electrolyte films. Sains Malaysiana 40:691–669

    CAS  Google Scholar 

  22. Pradhan DK, Choudhary RNP, Samantaray BK (2008) Studies of dielectric relaxation and AC conductivity behavior of plasticized polymer nanocomposite electrolytes. Int J Electrochem Sci 3:597–608

    CAS  Google Scholar 

  23. Samsudin AS, Isa MIN (2013) Conductivity and transport properties study of plasticized carboxymethyl cellulose (CMC) based solid biopolymer electrolytes (SBE). Adv Mater Res 856:118–122

    Article  Google Scholar 

  24. Buraidah MH, Arof AK (2011) Characterization of chitosan/PVA blended electrolyte doped NH4I. J Non-Cryst Solids 357:3261–3266

    Article  CAS  Google Scholar 

  25. Rarmesh S, Leen KH, Kumutha K, Arof AK (2007) FTIR studies of PVC/PMMA blend based polymer electrolytes. Spectrochim Acta A 66:1237–1242

    Article  Google Scholar 

  26. Kim DW, Kim YR, Park JK, Moon SI (1998) Electrical properties of the plasticized polymer electrolytes based on acrylonitrile-methyl methacrylate copolymers. Solid State Ionics 106:329–337

    Article  CAS  Google Scholar 

  27. Zulkepeli NAS, Tan W, Subban RHY (2017) Infrared studies of PVC-based electrolytes incorporated with lithium triflate and 1-butyl-3-methyl imidazolium trifluoromethanesulfonate as ionic liquid. AIP Conf Proc 10:1877–1844

    Google Scholar 

  28. Chai MN, Isa MIN (2016) Novel proton conducting solid BioPolymer electrolytes based on Carboxymethyl cellulose doped with oleic acid and plasticized with glycerol. Sci Rep 6:27328–27334

    Article  CAS  Google Scholar 

  29. Abdul Rahaman H, Khandaker MU, Khan ZR, Kufian MZ, Noor IM, Arof AK (2014) Effect of gamma irradiation on poly(vinyledene difluoride)-lithium bis(oxalato) borate electrolyte. Phys Chem Chem Phys 16:11537–11157

    Article  Google Scholar 

  30. Arof AK, Amirudin S, Yusof SZ, Noor IM (2014) A method based on impedance spectroscopy to determine transport properties of polymer electrolytes. Phys Chem Chem Phys 16:1856–1867

    Article  CAS  Google Scholar 

  31. Sim LN, Arof AK (2017) Elastomers and their potential as matrices in polymer electrolytes. INTECH 10:5772–5809

    Google Scholar 

  32. Muchakayala R, Song S, Gao S, Wang X, Fan Y (2017) Structure and ion transport in an ethylene carbonate-modified biodegradable gel polymer electrolyte. Polym Test 58:116–125

    Article  CAS  Google Scholar 

  33. Sownthari K, Suthanthiraraj SA (2014) Preparation and properties of a gel polymer electrolyte system based on poly ε-caprolactone containing 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfony)imide. J Phys Chem Solids 75:746–751

    Article  CAS  Google Scholar 

  34. Aziz SB, Abdullah OG, Rasheed MA, Hameed HM (2017) Effect of high salt concentration (HSC) on structural, morphological, and electrical characteristics of chitosan based solid polymer electrolytes. Polym 9:187–206

    Article  Google Scholar 

  35. MacDonald JR (1987) Impedance spectroscopy emphasizing solid materials and systems. Wiley, Hoboken

    Google Scholar 

  36. Subba Reddy CV, Han X, Zhu QY, Mai LQ, Chen W (2006) Conductivity and discharge characteristics of (PVC + NaClO4) polymer electrolyte systems. Eur Polym J 42:3114–3120

    Article  Google Scholar 

  37. Selvasekarapandian S, Hema M, Kawamura J, Kamishima O, Baskaran R (2010) Characterization of PVA-NH4NO3 polymer electrolyte and its application in rechargeable proton battery. J Phys Soc Jpn 79SA:163–168

    Article  Google Scholar 

  38. Subban RHY, Ahmad AH, Kamarulzaman N, Ali AMM (2005) Effects of plasticiser on the lithium ionic conductivity of polymer electrolyte PVC-LiCF3SO3. Ionics 11:442–445

    Article  CAS  Google Scholar 

  39. Aziz SB, Kadir MFZ, Abidin ZHZ (2016) Structural, morphological and electrochemical impedance study of CS:LiTf based solid polymer electrolyte: reformulated Arrhenius equation for ion transport study. Int J Electrochem Sci 11:9228–9244

    Article  CAS  Google Scholar 

  40. Che Balian SR, Ahmad A, Mohamed NS (2016) The effect of lithium iodide to the properties of carboxymethyl κ-carrageenan/carboxymethyl cellulose polymer electrolyte and dye-sensitized solar cell performance. Polym 8:163–173

    Article  Google Scholar 

  41. Tiong TS, Buraidah MH, Teo LP, Arof AK (2016) Conductivity studies of poly(ethylene oxide)(PEO)/poly(vinyl alcohol) (PVA) blend gel polymer electrolytes for dye-sensitized solar cel ls. Ionics 22:2133–2142

    Article  CAS  Google Scholar 

  42. Saxena A, Singh P, Bhattacharya B (2014) Structural and electrical studies of fullerene (C60) dispersed polymer electrolytes. Mater Tehnol 48:485–490

    CAS  Google Scholar 

  43. Shuhaimi NEA, Teo LP, Woo HJ, Majid SR, Arof AK (2012) Electrical double-layer capacitors with plasticized polymer electrolyte based on methyl cellulose. Polym Bull 69:807–826

    Article  CAS  Google Scholar 

  44. Shukur MF, Itnin R, Kadir MFZ (2014) Electrical properties of proton conducting solid biopolymer electrolytes based on starch-chitosan blend. Ionics 20:977–999

    Article  CAS  Google Scholar 

  45. Bandara TMWJ, Mellander BE (2011) Evaluation of mobility, diffusion coefficient and density of charge carriers in ionic liquids and novel electrolytes based on a new model for dielectric response. INTECH 10:5772–15183

    Google Scholar 

  46. Samsudin AS, Isa MIN (2012) Structural and ionic transport study on CMC doped NH4Br: a new types of biopolymer electrolytes. J Appl Sci 12:174–179

    Article  CAS  Google Scholar 

  47. Kumar D, Hashmi SA (2010) Ion transport and ion-filler-polymer interaction in poly(methyl methacrylate)-based, sodium ion conducting, gel polymer electrolytes dispersed with silica nanoparticles. J Power Sources 195:5101–5108

    Article  CAS  Google Scholar 

  48. Khiar AS, Arof AK (2010) Conductivity studies of starch-based polymer electrolytes. Ionics 16:123–129

    Article  CAS  Google Scholar 

  49. Kumar B, Scanlon LG, Spry RJ (2001) On the origin of conductivity enhancement in polymer-ceramic composite electrolytes. J Power Sources 96:337–342

    Article  CAS  Google Scholar 

  50. Sharma JP, Sekhon SS (2005) Relative role of plasticizer and nano size fumed silica on the conductivity behaviour of PEO-NH4PF6 polymer electrolytes. Ind J Eng Mater Sci 12:557–562

    CAS  Google Scholar 

  51. Sharma S, Dhiman N, Pathak D, Kumar R (2016) Effect of nano-size fumed silica on ionic conductivity of PVdF-HFP-based plasticized nano-composite polymer electrolytes. Ionics 22:1865–1872

    Article  CAS  Google Scholar 

  52. Samsudin AS, Isa MIN (2015) Conduction mechanism of enhanced CMC-NH4Br biopolymer electrolytes. Adv Mater Res 1108:27–32

    Article  Google Scholar 

  53. Buraidah MH, Teo LP, Majid SR, Arof AK (2009) Ionic conductivity by correlated barrier hopping in NH4I doped chitosan solid electrolyte. Phys B Condens Matter 404:1373–1379

    Article  CAS  Google Scholar 

  54. Rani MSA, Rudhziah S, Ahmad A, Mohamed NS (2014) Biopolymer electrolyte based on derivatives of cellulose from kenaf bast fiber. Polym 6:2371–2385

    Article  Google Scholar 

  55. Starkey SR, Frech R (1997) Plasticizer interactions with polymer and salt in propylene carbonate-poly(acrylonitrile)-lithium triflate. Electrochim Acta 42:471–474

    Article  CAS  Google Scholar 

  56. MacFarlane DR, Meakin P, Bishop A, McNaughton D, Rosalie JM, Forsyth M (1995) FTIR study of ion-pairing effects in plasticized polymer electrolyte. Electrochim Acta 40:2333–2337

    Article  CAS  Google Scholar 

  57. Wang Z, Huang B, Huang H, Chen L, Xue R, Wang F (1996) Investigation of the position Li+ ions in a polyacrylonitrile based electrolyte by Raman and infrared spectroscopy. Electrochim Acta 41:1443–1446

    Article  CAS  Google Scholar 

  58. Rasali NMJ, Samsudin AS (2017) Ionic transport properties of protonic conducting solid biopolymer electrolytes based on enhanced carboxymethyl cellulose-NH4Br with glycerol. Ionics 10:1–12

    Google Scholar 

  59. Rozali MLH, Ahmad NH, Isa MIN (2015) Effect of adipic acid composition on structural and conductivity solid biopolymer electrolytes based on carboxy methylcellulose studies. M Eurasian J Sustain Agric 9:39–45

    Google Scholar 

  60. Rozali MLH, Ahmad Z, Isa MIN (2015) Interaction between carboxy methylcellulose and salicylic acid solid biopolymer electrolytes. Adv Mater Res 1107:223–229

    Article  Google Scholar 

  61. Yu LH, Cheng WC, Chuh CY (2007) Conductivity and characterization of plasticized polymer electrolyte based on (polyacrylonitrile-b-polyethylene glycol) copolymer. J Power Sources 172:86–892

    Article  Google Scholar 

  62. Samsudin AS, Aziz MIA, Isa MIN (2012) Natural polymer electrolyte system based on sago: structural and transport behavior characteristics. Int J Polym Anal Charact 17:600–607

    Article  CAS  Google Scholar 

  63. Majid SR, Arof AK (2005) Proton-conducting polymer electrolyte films based on chitosan acetate complexed with NH4NO3 salt. Phys B Condens Matter 355:78–82

    Article  CAS  Google Scholar 

  64. Gondaliya N, Kanchan DK, Sharma P (2013) Effect of a plasticizer on a solid polymer electrolyte. Soc Plast Eng 10:2417–2422

    Google Scholar 

  65. Chai MN, Isa MIN (2013) The oleic acid composition effect on the carboxymethyl cellulose based biopolymer electrolyte. J Cryst Process Technol 3:1–4

    Article  CAS  Google Scholar 

  66. Kamarudin KH, Isa MIN (2013) Structural and DC ionic conductivity studies of carboxy methylcellulose doped with ammonium nitrate as solid polymer electrolytes. Int J Phys Sci 8:1581–1587

    CAS  Google Scholar 

  67. Majid SR, Arof AK (2007) Electrical behavior of proton-conducting chitosan-phosphoric acid-based electrolytes. Physica B 390:209–215

    Article  CAS  Google Scholar 

  68. Woo HJ, Majid SR, Arof AK (2011) Conduction and thermal properties of a proton conducting polymer electrolyte based on poly (ε-caprolactone). Solid State Ionics 199:14–20

    Article  Google Scholar 

  69. Ramli MA, Isa MIN (2016) Structural and ionic transport properties of protonic conducting solid biopolymer electrolytes based on carboxymethyl cellulose doped ammonium fluoride. J Phys Chem B 120:11567–11573

    Article  Google Scholar 

  70. Ahmad NH, Isa MIN (2016) Characterization of un-plasticized and propylene carbonate plasticized carboxymethyl cellulose doped ammonium chloride solid biopolymer electrolytes. Carbohydr Polym 137:426–432

    Article  CAS  Google Scholar 

  71. Fadzallah IA, Majid SR, Careem MA, Arof AK (2014) A study an ionic interactions in chitosan-oxalid acid polymer electrolyte membrane. J Membr Sci 463:65–72

    Article  CAS  Google Scholar 

  72. Ahmad NH, Isa MIN (2015) Proton conducting solid polymer electrolytes based carboxymethyl cellulose doped ammonium chloride: ionic conductivity and transport properties. Int J Plast Technol 18:1–11

    Google Scholar 

  73. Samsudin AS, Kuan ECH, Isa MIN (2011) Investigation of the potential of proton-conducting biopolymer electrolytes based methyl cellulose-glycolic acid. Int J Polym Anal Charact 16:477–485

    Article  CAS  Google Scholar 

  74. Okamoto Y, Yeh TF, Lee HS, Skotheim TA (1993) Design of alkaline metal ion conducting polymer electrolytes. J Polym Sci A Polym Chem 31:2573–2581

    Article  CAS  Google Scholar 

  75. Rhoo HJ, Kim HT, Park JK, Hwang TS (1997) Ionic conduction in plasticized PVC/PMMA blend polymer electrolytes. Electrochim Acta 42:1571–1579

    Article  CAS  Google Scholar 

  76. Samsudin AS, Khairul WM, Isa MIN (2012) Characterization on the potential of carboxy methylcellulose for application as proton conducting biopolymer electrolytes. J Non-Cryst Solids 358:1104–1112

    Article  CAS  Google Scholar 

  77. Itoh T, Miyamura Y, Ichikawa Y, Uno T, Kubo M, Yamamoto O (2003) Composite polymer electrolytes of poly(ethylene oxide)/BaTiO/Li salt with hyperbranched polymer. J Power Sources 119:403–408

    Article  Google Scholar 

  78. Rajendran S, Babu RS, Sivakumar P (2008) Investigations on PVC/PAN composite polymer electrolytes. J Membr Sci 315:67–73

    Article  CAS  Google Scholar 

  79. Leo CJ, Subba Rao GV, Chowdari BVR (2002) Studies on plasticized PEO–lithium triflate–ceramic filler composite electrolyte system. Solid State Ionics 148:159–171

    Article  CAS  Google Scholar 

  80. Ahmad NH, Isa MIN (2015) Structural and ionic conductivity studies of CMC based polymer electrolyte doped with NH4Cl. Adv Mater Res 1107:247–252

    Article  Google Scholar 

  81. Chowdhury FI, Khandaker MU, Amin YM, Kufian FZ, Woo HJ (2017) Vibrational, electrical, and structural properties of PVDF-LiBOB solid polymer electrolyte with high electrochemical potential window. Ionics 23:275–284

    Article  CAS  Google Scholar 

  82. Ibrahim S, Mohd Yasin SM, Nee NM, Ahmad R, Johan MR (2012) Conductivity, thermal and infrared studies on plasticized polymer electrolytes with carbon nanotubes as filler. J Non-Cryst Solids 358:210–216

    Article  CAS  Google Scholar 

  83. Rahaman MHA, Khandaker MU, Khan ZR, Kufian MZ, Noor ISM, Arof AK (2014) Effect of gamma irradiation in poly(vinyledene difluoride)-lithium Bis(oxalate)borate electrolytes. Phys Chem Chem Phys 16:11527–11537

    Article  Google Scholar 

  84. Zhou XY, Cui YF, Jia DM, Xie D (2009) Effect of a complex plasticizer on the structure and properties of the thermoplastic PVA/starch blends. J Polym-Plast Technol Eng 48:489–495

    Article  CAS  Google Scholar 

Download references

Funding

The authors would like to thank MOHE for FRGS grant (RDU170115) and UMP internal grant (RDU 1703189 and PGRS 170308), Faculty Industrial Science and Technology, Universiti Malaysia Pahang for the technical and research support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. S. Samsudin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zainuddin, N.K., Rasali, N.M.J. & Samsudin, A.S. Study on the effect of PEG in ionic transport for CMC-NH4Br-based solid polymer electrolyte. Ionics 24, 3039–3052 (2018). https://doi.org/10.1007/s11581-018-2505-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-018-2505-7

Keywords

Navigation