Ionics

pp 1–7 | Cite as

NaV3O8 with superior rate capability and cycle stability as cathode materials for sodium-ion batteries

Short Communications
  • 32 Downloads

Abstract

Development of novel cathode materials for sodium-ion batteries with high capacity and excellent cyclic performance is an exciting and demanding research direction. Herein, we demonstrate the synthesis of NaV3O8 via a rheological phase reaction method. The crystal structure and morphology of synthesized NaV3O8 were investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). The NaV3O8 powder, calcined at moderate temperature (350 °C) with more uniform and smaller nanorod/nanoplate morphology, and larger d001 spacing, exhibited excellent electrochemical performance as cathode material in sodium ion batteries. A specific discharge capacity of 120 mAh g−1 was achieved at the current density of 120 mA g−1, with exceptional cyclic performance (discharge capacity of 95 mAh g−1 at the 500th cycle). In addition, the NaV3O8 cathode demonstrated excellent rate capability and delivered specific capacity of 80.8 mAh g−1 at current density of 300 mA g−1. The superior electrochemical performance corresponds to the structural stability and faster ionic diffusion. The preliminary results indicate that NaV3O8 can be an alternative cathode material for high-performance sodium-ion batteries.

Keywords

NaV3O8 Cathode materials Enhanced electrochemical performances Sodium-ion batteries 

Notes

Acknowledgements

This work was supported by National Natural Science Foundation, China (Nos. 21403057, 21773057, and U1704142), Program for Innovative Team (in Science and Technology) in University of Henan Province, China (No. 17IRTSTHN003), Program for Science and Technology Innovation Talents in Universities of Henan Province, China (No. 18HASTIT008), Cultivation Plan for Young Core Teachers in Universities of Henan Province, China (No. 2016GGJS-068), Natural Science Foundation of Henan Province, China (No. 162300410050), Key Science and Technology Project of Henan Province, China (No. 162102210187), and Program for Henan Science and Technology Open and Cooperation Project, China (No. 172106000060).

References

  1. 1.
    Liang Y, Tao Z, Chen J (2012) Organic electrode materials for rechargeable lithium batteries. Adv Energy Mater 2(7):742–769.  https://doi.org/10.1002/aenm.201100795 CrossRefGoogle Scholar
  2. 2.
    Wang HG, Wang YH, Li YH, Wan YC, Duan Q (2015) Exceptional electrochemical performance of nitrogen-doped porous carbon for lithium storage. Carbon 82:116–123.  https://doi.org/10.1016/j.carbon.2014.10.041 CrossRefGoogle Scholar
  3. 3.
    Ong SP, Chevrier VL, Hautier G, Jain A, Moore C, Kim S, Ma XH, Ceder G (2011) Voltage, stability and diffusion barrier differences between sodium-ion and lithium-ion intercalation materials. Energy Environ Sci 4(9):3680–3688.  https://doi.org/10.1039/c1ee01782a CrossRefGoogle Scholar
  4. 4.
    Winter M, Besenhard JO, Spahr ME, Novák P (1998) Insertion electrode materials for rechargeable lithium batteries. Adv Mater 10(10):725–763.  https://doi.org/10.1002/(SICI)1521-4095(199807)10:10<725::AID-ADMA725>3.0.CO;2-Z CrossRefGoogle Scholar
  5. 5.
    Li W, Zhou M, Li HM, Wang KL, Cheng SJ, Jiang K (2015) A high performance sulfur-doped disordered carbon anode for sodium ion batteries. Energy Environ Sci 8(10):2916–2921.  https://doi.org/10.1039/C5EE01985K CrossRefGoogle Scholar
  6. 6.
    Zhou M, Li W, Gu TT, Wang KL, Cheng SC, Jiang K (2015) A sulfonated polyaniline with high density and high rate Na-storage performances as a flexible organic cathode for sodium ion batteries. Chem Commun 51(76):14354–14356.  https://doi.org/10.1039/C5CC05654C CrossRefGoogle Scholar
  7. 7.
    Zhu L, Shen Y, Sun M, Qian J, Cao Y, Ai X, Yang H (2013) Self-doped polypyrrole with ionizable sodium sulfonate as a renewable cathode material for sodium ion batteries. Chem Commun 49(97):11370–11372.  https://doi.org/10.1039/c3cc46642f CrossRefGoogle Scholar
  8. 8.
    Hou H, Banks CE, Jing M, Zhang Y, Ji X (2015) Carbon quantum dots and their derivative 3D porous carbon frameworks for sodium-ion batteries with ultralong cycle life. Adv Mater 27(47):7861–7866.  https://doi.org/10.1002/adma.201503816 CrossRefGoogle Scholar
  9. 9.
    Qian JF, Chen Y, Wu L, Cao YL, Yang HX (2012) High capacity Na-storage and superior cyclability of nanocomposite Sb/C anode for Na-ion batteries. Chem Commun 48(56):7070–7072.  https://doi.org/10.1039/c2cc32730a CrossRefGoogle Scholar
  10. 10.
    Berthelot R, Carlier D, Delmas C (2011) Electrochemical investigation of the P2–NaxCoO2 phase diagram. Nat Mater 10(1):74–80CrossRefGoogle Scholar
  11. 11.
    Doeff MM, Ma Y, Visco SJ, De Jonghe LC (1993) Electrochemical insertion of sodium into carbon. J Electrochem Soc 140(12):L169–L170.  https://doi.org/10.1149/1.2221153 CrossRefGoogle Scholar
  12. 12.
    Hwang S, Lee Y, Jo E, Chung KY, Choi W, Kim SM, Chang W (2017) Investigation of thermal stability of P2-NaxCoO2 cathode materials for sodium ion batteries using real-time electron microscopy. ACS Appl Mater Interfaces 9(22):18883–18888.  https://doi.org/10.1021/acsami.7b04478 CrossRefGoogle Scholar
  13. 13.
    Lu Z, Dahn JR (2001) In situ X-ray diffraction study of P2-Na2/3[ Ni1/3Mn2/3]O2. J Electrochem Soc 148(11):A1225–A1229.  https://doi.org/10.1149/1.1407247 CrossRefGoogle Scholar
  14. 14.
    Doeff MM, Peng MY, Ma Y, De Jonghe LC (1994) Orthorhombic NaxMnO2 as a cathode material for secondary sodium and lithium polymer batteries. J Electrochem Soc 141(11):L145–L147.  https://doi.org/10.1149/1.2059323 CrossRefGoogle Scholar
  15. 15.
    Liu Y, Fang X, Zhang A, Shen C, Liu Q, Enaya HA, Zhou C (2016) Layered P2-Na2/3 Ni1/3Mn2/3O2 as high-voltage cathode for sodium-ion batteries: the capacity decay mechanism and Al2O3 surface modification. Nano Energy 27:27–34.  https://doi.org/10.1016/j.nanoen.2016.06.026 CrossRefGoogle Scholar
  16. 16.
    Moreau P, Guyomard D, Gaubicher J, Boucher F (2010) Structure and stability of sodium intercalated phases in olivine FePO4. Chem Mater 22(14):4126–4128.  https://doi.org/10.1021/cm101377h CrossRefGoogle Scholar
  17. 17.
    Zaghib K, Trottier J, Hovington P, Brochu F, Guerfi A, Mauger A, Julien CM (2011) Characterization of Na-based phosphate as electrode materials for electrochemical cells. J Power Sources 196(22):9612–9617.  https://doi.org/10.1016/j.jpowsour.2011.06.061 CrossRefGoogle Scholar
  18. 18.
    Muruganantham R, Chiu YT, Yang CC, Wang CW, Liu WR (2017) An efficient evaluation of F-doped polyanion cathode materials with long cycle life for Na-ion batteries applications. Sci Rep 7(1):14808.  https://doi.org/10.1038/s41598-017-13718-0 CrossRefGoogle Scholar
  19. 19.
    Zhang H, Hasa I, Buchholz D, Qin B, Passerini S (2017) Effects of nitrogen doping on the structure and performance of carbon coated Na3V2(PO4)3 cathodes for sodium-ion batteries. Carbon 124:334–341.  https://doi.org/10.1016/j.carbon.2017.08.063 CrossRefGoogle Scholar
  20. 20.
    Palomares V, Serras P, Villaluenga I, Hueso KB, Carretero-Gonzalez J, Rojo T (2012) Na-ion batteries, recent advances and present challenges to become low cost energy storage systems. Energy Environ Sci 5(3):5884–5901.  https://doi.org/10.1039/c2ee02781j CrossRefGoogle Scholar
  21. 21.
    Wu C, Hu Z, Wang W, Zhang M, Yang J, Xie Y (2008) Synthetic paramontroseite VO2 with good aqueous lithium-ion battery performance. Chem Commun 39(33):3891–3893CrossRefGoogle Scholar
  22. 22.
    Xue Y, Zhang X, Zhang J, Wu J, Sun Y, Tian Y, Xie Y (2012) Sodium vanadium oxide Na2V6O16·3H2O nanobelts and nanorings: a new room-temperature ferromagnetic semiconductor. J Mater Chem 22(6):2560–2565.  https://doi.org/10.1039/C1JM14569J CrossRefGoogle Scholar
  23. 23.
    Ko YN, Chan Kang Y, Park SB (2013) A new strategy for synthesizing yolk-shell V2O5 powders with low melting temperature for high performance Li-ion batteries. Nanoscale 5(19):8899–8903CrossRefGoogle Scholar
  24. 24.
    Zhu L, Li W, Yu Z, Xie L, Cao X (2017) Synthesis and electrochemical performances of LiV3O8/poly (3,4-ethylenedioxythiophene) composites as cathode materials for rechargeable lithium batteries. Solid State Ionics 310:30–37.  https://doi.org/10.1016/j.ssi.2017.08.002 CrossRefGoogle Scholar
  25. 25.
    Chen Z, Cao L, Chen L, Zhou H, Xie K, Kuang Y (2015) Nanoplate-stacked baguette-like LiVO3 as a high performance cathode material for lithium-ion batteries. J Mater Chem A 3(16):8750–8755.  https://doi.org/10.1039/C5TA00928F CrossRefGoogle Scholar
  26. 26.
    Chen Z, Xu F, Cao S, Li Z, Yang H, Ai X, Cao Y (2017) High rate, long lifespan LiV3O8 nanorods as a cathode material for lithium-ion batteries. Small 13(18):1603148.  https://doi.org/10.1002/smll.201603148 CrossRefGoogle Scholar
  27. 27.
    Cao L, Chen L, Huang Z, Kuang Y, Zhou H, Chen Z (2016) NaV3O8 nanoplates as a lithium-ion-battery cathode with superior rate capability and cycle stability. ChemElectroChem 3(1):122–129CrossRefGoogle Scholar
  28. 28.
    Cao Y, Xiao L, Wang W, Choi D, Nie Z, Yu J, Saraf LV, Yang Z, Liu J (2011) Reversible sodium ion insertion in single crystalline manganese oxide nanowires with long cycle life. Adv Mater 23(28):3155–3160.  https://doi.org/10.1002/adma.201100904 CrossRefGoogle Scholar
  29. 29.
    Yabuuchi N, Kubota K, Dahbi M, Komaba S (2014) Research development on sodium-ion batteries. Chem Rev 114(23):11636–11682.  https://doi.org/10.1021/cr500192f CrossRefGoogle Scholar
  30. 30.
    He H, Jin G, Wang H, Huang X, Chen Z, Sun D, Tang Y (2014) Annealed NaV3O8 nanowires with good cycling stability as a novel cathode for Na-ion batteries. J Mater Chem A 2(10):3563–3570.  https://doi.org/10.1039/c3ta14486k CrossRefGoogle Scholar
  31. 31.
    Kang H, Liu Y, Shang M, Lu T, Wang Y, Jiao L (2015) NaV3O8 nanosheet@polypyrrole core-shell composites with good electrochemical performance as cathodes for Na-ion batteries. Nanoscale 7(20):9261–9267CrossRefGoogle Scholar
  32. 32.
    Wang H, Liu S, Ren Y, Wang W, Tang A (2012) Ultrathin Na1.08V3O8 nanosheets—a novel cathode material with superior rate capability and cycling stability for Li-ion batteries. Energy Environ Sci 5(3):6173–6179.  https://doi.org/10.1039/c2ee03215e CrossRefGoogle Scholar
  33. 33.
    Tang Y, Sun D, Wang H, Huang X, Zhang H, Liu S, Liu Y (2014) Synthesis and electrochemical properties of NaV3O8 nanoflakes as high-performance cathode for Li-ion battery. RSC Adv 4(16):8328–8334.  https://doi.org/10.1039/c3ra44733b CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.College of Chemistry, Chemical and Environmental EngineeringHenan University of TechnologyZhengzhouPeople’s Republic of China
  2. 2.Key Laboratory of High Specific Energy Materials for Electrochemical Power Sources of Zhengzhou CityHenan University of TechnologyZhengzhouPeople’s Republic of China

Personalised recommendations