Skip to main content
Log in

Electrochemical and structural analysis of Mg substitution in lithium-rich layered oxide for lithium-ion battery

  • Original Papers
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

Mg-doped lithium-rich layered oxide Li1.2Mn0.54Ni0.13Co0.13O2 with smooth morphology is synthesized by co-precipitation followed by calcination. The morphologies of bare particles and electrodes have been studied through scanning electron microscopy (SEM), which illustrates that, compared with the Mg-doped particles, the pristine particles are characteristic of angular and corrosion is much more likely to happen. Additionally, the Mg substitution can make the crystal structure stable during the electrode process and then enhance the cycle performance. Electrochemical impedance spectroscopy and transmission electron microscopy have been utilized to gain insight to the properties of pristine and Mg-doped particles before and after the electrode process. Mg-doped particles show lower charge transfer resistance and higher diffusion coefficients (D) of the diffusing lithium ions. After 100 cycles at 250 mA g−1, the morphology and crystal structure of Mg-doped materials show smaller changes than those of pristine particles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Kim T, Song B, Lunt AJG, Cibin G, Dent AJ, Lu L, Korsunsky AM (2016) Operando X-ray absorption spectroscopy study of atomic phase reversibility with wavelet transform in the lithium-rich manganese based oxide cathode. Chem Mater 28(12):4191–4203. https://doi.org/10.1021/acs.chemmater.6b00522

    Article  CAS  Google Scholar 

  2. Shunmugasundaram R, Senthil Arumugam R, Harris KJ, Goward GR, Dahn JR (2016) A search for low-irreversible capacity and high-reversible capacity positive electrode materials in the Li–Ni–Mn–Co pseudoquaternary system. Chem Mater 28(1):55–66. https://doi.org/10.1021/acs.chemmater.5b02104

    Article  CAS  Google Scholar 

  3. Wang J, Zhang Q, Li X et al (2015) Smart construction of three-dimensional hierarchical tubular transition metal oxide core/shell heterostructures with high-capacity and long-cycle-life lithium storage. Nano Energy 12:437–446. https://doi.org/10.1016/j.nanoen.2015.01.003

    Article  CAS  Google Scholar 

  4. Zhao K, Zhang L, Xia R, Dong Y, Xu W, Niu C, He L, Yan M, Qu L, Mai L (2016) SnO2 quantum dots@graphene oxide as a high-rate and long-life anode material for lithium-ion batteries. Small 12(5):588–594. https://doi.org/10.1002/smll.201502183

    Article  CAS  Google Scholar 

  5. Wang Z, Yin Y, Ren Y, Wang Z, Gao M, Ma T, Zhuang W, Lu S, Fan A, Amine K, Chen Z (2017) High performance lithium-manganese-rich cathode material with reduced impurities. Nano Energy 31:247–257. https://doi.org/10.1016/j.nanoen.2016.10.014

    Article  CAS  Google Scholar 

  6. Zuo X, Zhu J, Müller-Buschbaum P, Cheng YJ (2017) Silicon based lithium-ion battery anodes: a chronicle perspective review. Nano Energy 31:113–143. https://doi.org/10.1016/j.nanoen.2016.11.013

    Article  CAS  Google Scholar 

  7. Guo S, Zhu Y, Yan Y, Min YL, Fan JC, Xu QJ, Yun H (2016) (Metal-organic framework)-polyaniline sandwich structure composites as novel hybrid electrode materials for high-performance supercapacitor. J Power Sources 316:176–182. https://doi.org/10.1016/j.jpowsour.2016.03.040

    Article  CAS  Google Scholar 

  8. He Z, Wang Z, Chen H, Huang Z, Li X, Guo H, Wang R (2015) Electrochemical performance of zirconium doped lithium rich layered Li1.2Mn0.54Ni0.13Co0.13O2 oxide with porous hollow structure. J Power Sources 299:334–341. https://doi.org/10.1016/j.jpowsour.2015.09.025

    Article  CAS  Google Scholar 

  9. Liu Y, Gao Y, Dou A (2014) Influence of Li content on the structure and electrochemical performance of Li1+xNi0.25Mn0.75O2.25+x/2 cathode for Li-ion battery. J Power Sources 248:679–684. https://doi.org/10.1016/j.jpowsour.2013.10.006

    Article  CAS  Google Scholar 

  10. Ma Y, Zhou Y, Du C et al (2017) A new anion receptor for improving the interface between lithium- and manganese-rich layered oxide cathode and the electrolyte. Chem Mater 29(5):2141–2149. https://doi.org/10.1021/acs.chemmater.6b04784

    Article  CAS  Google Scholar 

  11. Wang Y, Yang Z, Qian Y, Gu L, Zhou H (2015) New insights into improving rate performance of lithium-rich cathode material. Adv Mater 27(26):3915–3920. https://doi.org/10.1002/adma.201500956

    Article  CAS  Google Scholar 

  12. Chen L, Su Y, Chen S, Li N, Bao L, Li W, Wang Z, Wang M, Wu F (2014) Hierarchical Li1.2Ni0.2Mn0.6O2 nanoplates with exposed {010} planes as high-performance cathode material for lithium-ion batteries. Adv Mater 26(39):6756–6760. https://doi.org/10.1002/adma.201402541

    Article  CAS  Google Scholar 

  13. Liu Y, Zhang Z, Fu Y, Wang Q, Pan J, Su M, Battaglia VS (2016) Investigation the electrochemical performance of Li 1.2 Ni 0.2 Mn 0.6 O 2 cathode material with ZnAl 2 O 4 coating for lithium ion batteries. J Alloys Compd 685:523–532. https://doi.org/10.1016/j.jallcom.2016.05.329

    Article  CAS  Google Scholar 

  14. Li L, Chen Z, Zhang Q, Xu M, Zhou X, Zhu H, Zhang K (2015) A hydrolysis-hydrothermal route for the synthesis of ultrathin LiAlO2-inlaid LiNi0.5Co0.2Mn0.3O2 as a high-performance cathode material for lithium ion batteries. J Mater Chem A 3(2):894–904. https://doi.org/10.1039/C4TA05902F

    Article  CAS  Google Scholar 

  15. He Z, Wang Z, Huang Z, Chen H, Li X, Guo H (2015) A novel architecture designed for lithium rich layered Li[Li0.2Mn0.54Ni0.13Co0.13]O2 oxides for lithium-ion batteries. J Mater Chem A 3(32):16817–16823. https://doi.org/10.1039/C5TA04424C

    Article  CAS  Google Scholar 

  16. Li L, Xu M, Yao Q, Chen Z, Song L, Zhang Z, Gao C, Wang P, Yu Z, Lai Y (2016) Alleviating surface degradation of nickel-rich layered oxide cathode material by encapsulating with nanoscale Li-ions/electrons superionic conductors hybrid membrane for advanced Li-ion batteries. ACS Appl Mater Interfaces 8(45):30879–30889. https://doi.org/10.1021/acsami.6b09197

    Article  CAS  Google Scholar 

  17. Chen D, Zheng F, Li L, Chen M, Zhong X, Li W, Lu L (2017) Effect of Li 3 PO 4 coating of layered lithium-rich oxide on electrochemical performance. J Power Sources 341:147–155. https://doi.org/10.1016/j.jpowsour.2016.11.020

    Article  CAS  Google Scholar 

  18. Zheng F, Yang C, Xiong X, Xiong J, Hu R, Chen Y, Liu M (2015) Nanoscale surface modification of lithium-rich layered-oxide composite cathodes for suppressing voltage fade. Angew Chem Int Ed Engl 54(44):13058–13062. https://doi.org/10.1002/anie.201506408

    Article  CAS  Google Scholar 

  19. Wang H, Tan TA, Yang P, Lai MO, Lu L (2011) High-rate performances of the Ru-doped spinel LiNi0.5Mn1.5O4: effects of doping and particle size. J Phys Chem C 115(13):6102–6110. https://doi.org/10.1021/jp110746w

    Article  CAS  Google Scholar 

  20. Dianat A, Seriani N, Bobeth M, Cuniberti G (2013) Effects of Al-doping on the properties of Li–Mn–Ni–O cathode materials for Li-ion batteries: an ab initio study. J Mater Chem A 1(32):9273. https://doi.org/10.1039/c3ta11598d

    Article  CAS  Google Scholar 

  21. Park J-H, Lim J, Yoon J et al (2012) The effects of Mo doping on 0.3Li[Li0.33Mn0.67]O2.0.7Li[Ni0.5Co0.2Mn0.3]O2 cathode material. Dalton Transactions 11:3053

    Article  Google Scholar 

  22. He W, Yuan D, Qian J, Ai X, Yang H, Cao Y (2013) Enhanced high-rate capability and cycling stability of Na-stabilized layered Li1.2[Co0.13Ni0.13Mn0.54]O2 cathode material. J Mater Chem A 1(37):11397. https://doi.org/10.1039/c3ta12296d

    Article  CAS  Google Scholar 

  23. Kang S, Qin H, Fang Y, Li X, Wang Y (2014) Preparation and electrochemical performance of yttrium-doped Li[Li0.20Mn0.534Ni0.133Co0.133]O2 as cathode material for lithium-ion batteries. Electrochim Acta 144:22–30. https://doi.org/10.1016/j.electacta.2014.06.155

    Article  CAS  Google Scholar 

  24. Jin X, Xu Q, Liu H, Yuan X, Xia Y (2014) Excellent rate capability of Mg doped Li[Li0.2Ni0.13Co0.13Mn0.54]O2 cathode material for lithium-ion battery. Electrochim Acta 136:19–26. https://doi.org/10.1016/j.electacta.2014.05.043

    Article  CAS  Google Scholar 

  25. Wang YX, Shang KH, He W, Ai XP, Cao YL, Yang HX (2015) Magnesium-doped Li1.2[Co0.13Ni0.13Mn0.54]O2 for lithium-ion battery cathode with enhanced cycling stability and rate capability. ACS Appl Mater Interfaces 7(23):13014–13021. https://doi.org/10.1021/acsami.5b03125

    Article  CAS  PubMed  Google Scholar 

  26. Yi T-F, Li Y-M, Yang S-Y, Zhu YR, Xie Y (2016) Improved cycling stability and fast charge–discharge performance of cobalt-free lithium-rich oxides by magnesium-doping. ACS Appl Mater Interfaces 8(47):32349–32359. https://doi.org/10.1021/acsami.6b11724

    Article  CAS  Google Scholar 

  27. Yuan X, Xu Q-j, Liu X, Shen W, Liu H, Xia Y (2016) Excellent rate performance and high capacity of Mo doped layered cathode material Li[Li 0.2 Mn 0.54 Ni 0.13 Co 0.13 ]O 2 derived from an improved coprecipitation approach. Electrochim Acta 207:120–129. https://doi.org/10.1016/j.electacta.2016.04.180

    Article  CAS  Google Scholar 

  28. Jin Y-C, Duh J-G (2017) Hierarchically-structured nanocrystalline lithium rich layered composites with enhanced rate performances for lithium ion battery. Energy Storage Mater 6:157–163. https://doi.org/10.1016/j.ensm.2016.10.009

    Article  Google Scholar 

  29. Johnson CS, Kim J-S, Lefief C, Li N, Vaughey JT, Thackeray MM (2004) The significance of the Li2MnO3 component in ‘composite’ xLi2MnO3·(1−x)LiMn0.5Ni0.5O2 electrodes. Electrochem Commun 6(10):1085–1091. https://doi.org/10.1016/j.elecom.2004.08.002

    Article  CAS  Google Scholar 

  30. Johnson CS, Li N, Lefief C, Thackeray MM (2007) Anomalous capacity and cycling stability of xLi2MnO3·(1−x)LiMO2 electrodes (M=Mn, Ni, Co) in lithium batteries at 50°C. Electrochem Commun 9(4):787–795. https://doi.org/10.1016/j.elecom.2006.11.006

    Article  CAS  Google Scholar 

  31. Kang SH, Thackeray MM (2008) Stabilization of xLi2MnO3⋅(1−x)LiMO2 electrode surfaces (M=Mn, Ni, Co) with mildly acidic, fluorinated solutions. J Electrochem Soc 155(4):A269. https://doi.org/10.1149/1.2834904

    Article  CAS  Google Scholar 

  32. Li J, Jia T, Liu K, Zhao J, Chen J, Cao C (2016) Facile design and synthesis of Li-rich nanoplates cathodes with habit-tuned crystal for lithium ion batteries. J Power Sources 333:37–42. https://doi.org/10.1016/j.jpowsour.2016.09.150

    Article  CAS  Google Scholar 

  33. Muhammad S, Kim H, Kim Y, Kim D, Song JH, Yoon J, Park JH, Ahn SJ, Kang SH, Thackeray MM, Yoon WS (2016) Evidence of reversible oxygen participation in anomalously high capacity Li- and Mn-rich cathodes for Li-ion batteries. Nano Energy 21:172–184. https://doi.org/10.1016/j.nanoen.2015.12.027

    Article  CAS  Google Scholar 

  34. Sathiyamoorthi R, Shakkthivel P, Ramalakshmi S, Shul YG (2007) Influence of Mg doping on the performance of LiNiO2 matrix ceramic nanoparticles in high-voltage lithium-ion cells. J Power Sources 171(2):922–927. https://doi.org/10.1016/j.jpowsour.2007.06.023

    Article  CAS  Google Scholar 

  35. Woo SW, Myung ST, Bang H, Kim DW, Sun YK (2009) Improvement of electrochemical and thermal properties of Li[Ni0.8Co0.1Mn0.1]O2 positive electrode materials by multiple metal (Al, Mg) substitution. Electrochim Acta 54(15):3851–3856. https://doi.org/10.1016/j.electacta.2009.01.048

    Article  CAS  Google Scholar 

  36. Amalraj F, Kovacheva D, Talianker M, Zeiri L, Grinblat J, Leifer N, Goobes G, Markovsky B, Aurbach D (2010) Integrated materials xLi2MnO3⋅(1−x)LiMn1/3Ni1/3Co1/3O2 (x=0.3, 0.5, 0.7) synthesized. J Electrochem Soc 157(10):A1121. https://doi.org/10.1149/1.3463782

    Article  CAS  Google Scholar 

  37. Balasubramanian M, Sun X, Yang XQ, McBreen J (2001) In situ X-ray diffraction and X-ray absorption studies of high-rate lithium-ion batteries. J Power Sources 92(1-2):1–8. https://doi.org/10.1016/S0378-7753(00)00493-6

    Article  CAS  Google Scholar 

  38. Lu Z, Dahn JR (2002) Understanding the anomalous capacity of Li/Li[NixLi(1/3−2x/3)Mn(2/3−x/3)]O2 cells using in situ X-ray diffraction and electrochemical studies. J Electrochem Soc 149(7):A815. https://doi.org/10.1149/1.1480014

    Article  CAS  Google Scholar 

  39. Grey CP, Yoon W-S, Reed J, Ceder G (2004) Electrochemical activity of Li in the transition-metal sites of O3 Li[Li(1−2x)/3Mn(2−x)/3Nix]O2. Electrochem Solid-State Lett 7(9):A290. https://doi.org/10.1149/1.1783113

    Article  CAS  Google Scholar 

  40. Wang R, He X, He L, Wang F, Xiao R, Gu L, Li H, Chen L (2013) Atomic structure of Li2MnO3 after partial delithiation and re-lithiation. Adv Energy Mater 3(10):1358–1367. https://doi.org/10.1002/aenm.201200842

    Article  CAS  Google Scholar 

  41. Kang K, Ceder G et al (2006) Factors that affect Li mobility in layered lithium transition metal oxides. Phys Rev B 74(9):094105. https://doi.org/10.1103/PhysRevB.74.094105

    Article  CAS  Google Scholar 

  42. Ito A, Li D, Ohsawa Y, Sato Y (2008) A new approach to improve the high-voltage cyclic performance of Li-rich layered cathode material by electrochemical pre-treatment. J Power Sources 183(1):344–346. https://doi.org/10.1016/j.jpowsour.2008.04.086

    Article  CAS  Google Scholar 

  43. Jiao LF, Zhang M, Yuan HT, Zhao M, Guo J, Wang W, Zhou XD, Wang YM (2007) Effect of Cr doping on the structural, electrochemical properties of Li[Li0.2Ni0.2−x/2Mn0.6−x/2Crx]O2 (x=0, 0.02, 0.04, 0.06, 0.08) as cathode materials for lithium secondary batteries. J Power Sources 167(1):178–184. https://doi.org/10.1016/j.jpowsour.2007.01.070

    Article  CAS  Google Scholar 

  44. Jafta CJ, Ozoemena KI, Mathe MK, Roos WD (2012) Synthesis, characterisation and electrochemical intercalation kinetics of nanostructured aluminium-doped Li[Li0.2Mn0.54Ni0.13Co0.13]O2 cathode material for lithium ion battery. Electrochim Acta 85:411–422. https://doi.org/10.1016/j.electacta.2012.08.074

    Article  CAS  Google Scholar 

  45. Lin J, Mu D, Jin Y, Wu B, Ma Y, Wu F (2013) Li-rich layered composite Li[Li0.2Ni0.2Mn0.6]O2 synthesized by a novel approach as cathode material for lithium ion battery. J Power Sources 230:76–80. https://doi.org/10.1016/j.jpowsour.2012.12.042

    Article  CAS  Google Scholar 

Download references

Funding

The project was sponsored by the National Natural Science Foundation of China (Grant No. 51574287) and the National Basic Research Program of China (973 Program, Grant No. 2014CB643406).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xinhai Li.

Electronic supplementary material

ESM 1

(DOC 561 kb)

ESM 2

(DOC 158 kb)

ESM 3

(DOC 161 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ouyang, H., Li, X., Wang, Z. et al. Electrochemical and structural analysis of Mg substitution in lithium-rich layered oxide for lithium-ion battery. Ionics 24, 3347–3356 (2018). https://doi.org/10.1007/s11581-018-2475-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-018-2475-9

Keywords

Navigation