pp 1–10 | Cite as

Electrochemical and structural analysis of Mg substitution in lithium-rich layered oxide for lithium-ion battery

  • Hongyong Ouyang
  • Xinhai Li
  • Zhixing Wang
  • Huajun Guo
  • Wenjie Peng
Original Papers


Mg-doped lithium-rich layered oxide Li1.2Mn0.54Ni0.13Co0.13O2 with smooth morphology is synthesized by co-precipitation followed by calcination. The morphologies of bare particles and electrodes have been studied through scanning electron microscopy (SEM), which illustrates that, compared with the Mg-doped particles, the pristine particles are characteristic of angular and corrosion is much more likely to happen. Additionally, the Mg substitution can make the crystal structure stable during the electrode process and then enhance the cycle performance. Electrochemical impedance spectroscopy and transmission electron microscopy have been utilized to gain insight to the properties of pristine and Mg-doped particles before and after the electrode process. Mg-doped particles show lower charge transfer resistance and higher diffusion coefficients (D) of the diffusing lithium ions. After 100 cycles at 250 mA g−1, the morphology and crystal structure of Mg-doped materials show smaller changes than those of pristine particles.


Lithium-rich layered oxide Element doping Cathode material Lithium-ion battery 


Funding information

The project was sponsored by the National Natural Science Foundation of China (Grant No. 51574287) and the National Basic Research Program of China (973 Program, Grant No. 2014CB643406).

Supplementary material

11581_2018_2475_MOESM1_ESM.doc (562 kb)
ESM 1 (DOC 561 kb)
11581_2018_2475_MOESM2_ESM.doc (158 kb)
ESM 2 (DOC 158 kb)
11581_2018_2475_MOESM3_ESM.doc (162 kb)
ESM 3 (DOC 161 kb)


  1. 1.
    Kim T, Song B, Lunt AJG, Cibin G, Dent AJ, Lu L, Korsunsky AM (2016) Operando X-ray absorption spectroscopy study of atomic phase reversibility with wavelet transform in the lithium-rich manganese based oxide cathode. Chem Mater 28(12):4191–4203. CrossRefGoogle Scholar
  2. 2.
    Shunmugasundaram R, Senthil Arumugam R, Harris KJ, Goward GR, Dahn JR (2016) A search for low-irreversible capacity and high-reversible capacity positive electrode materials in the Li–Ni–Mn–Co pseudoquaternary system. Chem Mater 28(1):55–66. CrossRefGoogle Scholar
  3. 3.
    Wang J, Zhang Q, Li X et al (2015) Smart construction of three-dimensional hierarchical tubular transition metal oxide core/shell heterostructures with high-capacity and long-cycle-life lithium storage. Nano Energy 12:437–446. CrossRefGoogle Scholar
  4. 4.
    Zhao K, Zhang L, Xia R, Dong Y, Xu W, Niu C, He L, Yan M, Qu L, Mai L (2016) SnO2 quantum dots@graphene oxide as a high-rate and long-life anode material for lithium-ion batteries. Small 12(5):588–594. CrossRefGoogle Scholar
  5. 5.
    Wang Z, Yin Y, Ren Y, Wang Z, Gao M, Ma T, Zhuang W, Lu S, Fan A, Amine K, Chen Z (2017) High performance lithium-manganese-rich cathode material with reduced impurities. Nano Energy 31:247–257. CrossRefGoogle Scholar
  6. 6.
    Zuo X, Zhu J, Müller-Buschbaum P, Cheng YJ (2017) Silicon based lithium-ion battery anodes: a chronicle perspective review. Nano Energy 31:113–143. CrossRefGoogle Scholar
  7. 7.
    Guo S, Zhu Y, Yan Y, Min YL, Fan JC, Xu QJ, Yun H (2016) (Metal-organic framework)-polyaniline sandwich structure composites as novel hybrid electrode materials for high-performance supercapacitor. J Power Sources 316:176–182. CrossRefGoogle Scholar
  8. 8.
    He Z, Wang Z, Chen H, Huang Z, Li X, Guo H, Wang R (2015) Electrochemical performance of zirconium doped lithium rich layered Li1.2Mn0.54Ni0.13Co0.13O2 oxide with porous hollow structure. J Power Sources 299:334–341. CrossRefGoogle Scholar
  9. 9.
    Liu Y, Gao Y, Dou A (2014) Influence of Li content on the structure and electrochemical performance of Li1+xNi0.25Mn0.75O2.25+x/2 cathode for Li-ion battery. J Power Sources 248:679–684. CrossRefGoogle Scholar
  10. 10.
    Ma Y, Zhou Y, Du C et al (2017) A new anion receptor for improving the interface between lithium- and manganese-rich layered oxide cathode and the electrolyte. Chem Mater 29(5):2141–2149. CrossRefGoogle Scholar
  11. 11.
    Wang Y, Yang Z, Qian Y, Gu L, Zhou H (2015) New insights into improving rate performance of lithium-rich cathode material. Adv Mater 27(26):3915–3920. CrossRefGoogle Scholar
  12. 12.
    Chen L, Su Y, Chen S, Li N, Bao L, Li W, Wang Z, Wang M, Wu F (2014) Hierarchical Li1.2Ni0.2Mn0.6O2 nanoplates with exposed {010} planes as high-performance cathode material for lithium-ion batteries. Adv Mater 26(39):6756–6760. CrossRefGoogle Scholar
  13. 13.
    Liu Y, Zhang Z, Fu Y, Wang Q, Pan J, Su M, Battaglia VS (2016) Investigation the electrochemical performance of Li 1.2 Ni 0.2 Mn 0.6 O 2 cathode material with ZnAl 2 O 4 coating for lithium ion batteries. J Alloys Compd 685:523–532. CrossRefGoogle Scholar
  14. 14.
    Li L, Chen Z, Zhang Q, Xu M, Zhou X, Zhu H, Zhang K (2015) A hydrolysis-hydrothermal route for the synthesis of ultrathin LiAlO2-inlaid LiNi0.5Co0.2Mn0.3O2 as a high-performance cathode material for lithium ion batteries. J Mater Chem A 3(2):894–904. CrossRefGoogle Scholar
  15. 15.
    He Z, Wang Z, Huang Z, Chen H, Li X, Guo H (2015) A novel architecture designed for lithium rich layered Li[Li0.2Mn0.54Ni0.13Co0.13]O2 oxides for lithium-ion batteries. J Mater Chem A 3(32):16817–16823. CrossRefGoogle Scholar
  16. 16.
    Li L, Xu M, Yao Q, Chen Z, Song L, Zhang Z, Gao C, Wang P, Yu Z, Lai Y (2016) Alleviating surface degradation of nickel-rich layered oxide cathode material by encapsulating with nanoscale Li-ions/electrons superionic conductors hybrid membrane for advanced Li-ion batteries. ACS Appl Mater Interfaces 8(45):30879–30889. CrossRefGoogle Scholar
  17. 17.
    Chen D, Zheng F, Li L, Chen M, Zhong X, Li W, Lu L (2017) Effect of Li 3 PO 4 coating of layered lithium-rich oxide on electrochemical performance. J Power Sources 341:147–155. CrossRefGoogle Scholar
  18. 18.
    Zheng F, Yang C, Xiong X, Xiong J, Hu R, Chen Y, Liu M (2015) Nanoscale surface modification of lithium-rich layered-oxide composite cathodes for suppressing voltage fade. Angew Chem Int Ed Engl 54(44):13058–13062. CrossRefGoogle Scholar
  19. 19.
    Wang H, Tan TA, Yang P, Lai MO, Lu L (2011) High-rate performances of the Ru-doped spinel LiNi0.5Mn1.5O4: effects of doping and particle size. J Phys Chem C 115(13):6102–6110. CrossRefGoogle Scholar
  20. 20.
    Dianat A, Seriani N, Bobeth M, Cuniberti G (2013) Effects of Al-doping on the properties of Li–Mn–Ni–O cathode materials for Li-ion batteries: an ab initio study. J Mater Chem A 1(32):9273. CrossRefGoogle Scholar
  21. 21.
    Park J-H, Lim J, Yoon J et al (2012) The effects of Mo doping on 0.3Li[Li0.33Mn0.67]O2.0.7Li[Ni0.5Co0.2Mn0.3]O2 cathode material. Dalton Transactions 11:3053CrossRefGoogle Scholar
  22. 22.
    He W, Yuan D, Qian J, Ai X, Yang H, Cao Y (2013) Enhanced high-rate capability and cycling stability of Na-stabilized layered Li1.2[Co0.13Ni0.13Mn0.54]O2 cathode material. J Mater Chem A 1(37):11397. CrossRefGoogle Scholar
  23. 23.
    Kang S, Qin H, Fang Y, Li X, Wang Y (2014) Preparation and electrochemical performance of yttrium-doped Li[Li0.20Mn0.534Ni0.133Co0.133]O2 as cathode material for lithium-ion batteries. Electrochim Acta 144:22–30. CrossRefGoogle Scholar
  24. 24.
    Jin X, Xu Q, Liu H, Yuan X, Xia Y (2014) Excellent rate capability of Mg doped Li[Li0.2Ni0.13Co0.13Mn0.54]O2 cathode material for lithium-ion battery. Electrochim Acta 136:19–26. CrossRefGoogle Scholar
  25. 25.
    Wang YX, Shang KH, He W, Ai XP, Cao YL, Yang HX (2015) Magnesium-doped Li1.2[Co0.13Ni0.13Mn0.54]O2 for lithium-ion battery cathode with enhanced cycling stability and rate capability. ACS Appl Mater Interfaces 7(23):13014–13021. CrossRefGoogle Scholar
  26. 26.
    Yi T-F, Li Y-M, Yang S-Y, Zhu YR, Xie Y (2016) Improved cycling stability and fast charge–discharge performance of cobalt-free lithium-rich oxides by magnesium-doping. ACS Appl Mater Interfaces 8(47):32349–32359. CrossRefGoogle Scholar
  27. 27.
    Yuan X, Xu Q-j, Liu X, Shen W, Liu H, Xia Y (2016) Excellent rate performance and high capacity of Mo doped layered cathode material Li[Li 0.2 Mn 0.54 Ni 0.13 Co 0.13 ]O 2 derived from an improved coprecipitation approach. Electrochim Acta 207:120–129. CrossRefGoogle Scholar
  28. 28.
    Jin Y-C, Duh J-G (2017) Hierarchically-structured nanocrystalline lithium rich layered composites with enhanced rate performances for lithium ion battery. Energy Storage Mater 6:157–163. CrossRefGoogle Scholar
  29. 29.
    Johnson CS, Kim J-S, Lefief C, Li N, Vaughey JT, Thackeray MM (2004) The significance of the Li2MnO3 component in ‘composite’ xLi2MnO3·(1−x)LiMn0.5Ni0.5O2 electrodes. Electrochem Commun 6(10):1085–1091. CrossRefGoogle Scholar
  30. 30.
    Johnson CS, Li N, Lefief C, Thackeray MM (2007) Anomalous capacity and cycling stability of xLi2MnO3·(1−x)LiMO2 electrodes (M=Mn, Ni, Co) in lithium batteries at 50°C. Electrochem Commun 9(4):787–795. CrossRefGoogle Scholar
  31. 31.
    Kang SH, Thackeray MM (2008) Stabilization of xLi2MnO3⋅(1−x)LiMO2 electrode surfaces (M=Mn, Ni, Co) with mildly acidic, fluorinated solutions. J Electrochem Soc 155(4):A269. CrossRefGoogle Scholar
  32. 32.
    Li J, Jia T, Liu K, Zhao J, Chen J, Cao C (2016) Facile design and synthesis of Li-rich nanoplates cathodes with habit-tuned crystal for lithium ion batteries. J Power Sources 333:37–42. CrossRefGoogle Scholar
  33. 33.
    Muhammad S, Kim H, Kim Y, Kim D, Song JH, Yoon J, Park JH, Ahn SJ, Kang SH, Thackeray MM, Yoon WS (2016) Evidence of reversible oxygen participation in anomalously high capacity Li- and Mn-rich cathodes for Li-ion batteries. Nano Energy 21:172–184. CrossRefGoogle Scholar
  34. 34.
    Sathiyamoorthi R, Shakkthivel P, Ramalakshmi S, Shul YG (2007) Influence of Mg doping on the performance of LiNiO2 matrix ceramic nanoparticles in high-voltage lithium-ion cells. J Power Sources 171(2):922–927. CrossRefGoogle Scholar
  35. 35.
    Woo SW, Myung ST, Bang H, Kim DW, Sun YK (2009) Improvement of electrochemical and thermal properties of Li[Ni0.8Co0.1Mn0.1]O2 positive electrode materials by multiple metal (Al, Mg) substitution. Electrochim Acta 54(15):3851–3856. CrossRefGoogle Scholar
  36. 36.
    Amalraj F, Kovacheva D, Talianker M, Zeiri L, Grinblat J, Leifer N, Goobes G, Markovsky B, Aurbach D (2010) Integrated materials xLi2MnO3⋅(1−x)LiMn1/3Ni1/3Co1/3O2 (x=0.3, 0.5, 0.7) synthesized. J Electrochem Soc 157(10):A1121. CrossRefGoogle Scholar
  37. 37.
    Balasubramanian M, Sun X, Yang XQ, McBreen J (2001) In situ X-ray diffraction and X-ray absorption studies of high-rate lithium-ion batteries. J Power Sources 92(1-2):1–8. CrossRefGoogle Scholar
  38. 38.
    Lu Z, Dahn JR (2002) Understanding the anomalous capacity of Li/Li[NixLi(1/3−2x/3)Mn(2/3−x/3)]O2 cells using in situ X-ray diffraction and electrochemical studies. J Electrochem Soc 149(7):A815. CrossRefGoogle Scholar
  39. 39.
    Grey CP, Yoon W-S, Reed J, Ceder G (2004) Electrochemical activity of Li in the transition-metal sites of O3 Li[Li(1−2x)/3Mn(2−x)/3Nix]O2. Electrochem Solid-State Lett 7(9):A290. CrossRefGoogle Scholar
  40. 40.
    Wang R, He X, He L, Wang F, Xiao R, Gu L, Li H, Chen L (2013) Atomic structure of Li2MnO3 after partial delithiation and re-lithiation. Adv Energy Mater 3(10):1358–1367. CrossRefGoogle Scholar
  41. 41.
    Kang K, Ceder G et al (2006) Factors that affect Li mobility in layered lithium transition metal oxides. Phys Rev B 74(9):094105. CrossRefGoogle Scholar
  42. 42.
    Ito A, Li D, Ohsawa Y, Sato Y (2008) A new approach to improve the high-voltage cyclic performance of Li-rich layered cathode material by electrochemical pre-treatment. J Power Sources 183(1):344–346. CrossRefGoogle Scholar
  43. 43.
    Jiao LF, Zhang M, Yuan HT, Zhao M, Guo J, Wang W, Zhou XD, Wang YM (2007) Effect of Cr doping on the structural, electrochemical properties of Li[Li0.2Ni0.2−x/2Mn0.6−x/2Crx]O2 (x=0, 0.02, 0.04, 0.06, 0.08) as cathode materials for lithium secondary batteries. J Power Sources 167(1):178–184. CrossRefGoogle Scholar
  44. 44.
    Jafta CJ, Ozoemena KI, Mathe MK, Roos WD (2012) Synthesis, characterisation and electrochemical intercalation kinetics of nanostructured aluminium-doped Li[Li0.2Mn0.54Ni0.13Co0.13]O2 cathode material for lithium ion battery. Electrochim Acta 85:411–422. CrossRefGoogle Scholar
  45. 45.
    Lin J, Mu D, Jin Y, Wu B, Ma Y, Wu F (2013) Li-rich layered composite Li[Li0.2Ni0.2Mn0.6]O2 synthesized by a novel approach as cathode material for lithium ion battery. J Power Sources 230:76–80. CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Hongyong Ouyang
    • 1
  • Xinhai Li
    • 1
  • Zhixing Wang
    • 1
  • Huajun Guo
    • 1
  • Wenjie Peng
    • 1
  1. 1.School of Metallurgy and EnvironmentCentral South UniversityChangshaPeople’s Republic of China

Personalised recommendations