Skip to main content
Log in

Effect of high-temperature crystallization on the electrochemical properties of LiNi0.5Co0.2Mn0.3O2 synthesized from a lithiated transition metal oxide precursor

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

The lithiated transition metal oxide precursor (LNCMO) with typical α-NaFeO2 structure and imperfect crystallinity, obtained from a hydrothermal process, was pretreated at 500 °C and then subjected to sintering at 800–920 °C to synthesize the ternary layered LiNi0.5Co0.2Mn0.3O2 (NCM523). X-ray diffraction (XRD), scanning electron microscope (SEM), cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), and charge/discharge testing were used for investigating the effect of the high-temperature crystallization on the properties of the NCM523 cathode materials. The results show that the materials heated at 880–900 °C possess superior cation ordering, perfect crystallinity, and excellent electrochemical performances, among which the material heated at 900 °C delivers better performances, with the initial discharge capacity of 152.6 mAh g−1 at 0.5 C over 3.0 to 4.3 V and the capacity retention of 95.5% after 50 cycles. Furthermore, the effect of the high-temperature crystallization on the Li+ diffusion coefficient, potential polarization, and electrochemical resistance are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Liu S, Wu H, Huang L, Xiang M, Liu H, Zhang Y (2016) Synthesis of Li2Si2O5-coated LiNi0.6Co0.2Mn0.2O2 cathode materials with enhanced high-voltage electrochemical properties for lithium-ion batteries. Journal of Alloys & Compounds 674:447–454. https://doi.org/10.1016/j.jallcom.2016.03.060

    Article  CAS  Google Scholar 

  2. Wei Y, Zheng J, Cui S, Song X, Su Y, Deng W, Wu Z, Wang X, Wang W, Rao M (2015) Kinetics Tuning of Li-Ion Diffusion in Layered Li(NixMnyCoz)O2. J Am Chem Soc 137(26):8364–8367. https://doi.org/10.1021/jacs.5b04040

    Article  CAS  PubMed  Google Scholar 

  3. Yang K, Fan LZ, Guo J, Qu X (2012) Significant improvement of electrochemical properties of AlF3-coated LiNi0.5Co0.2Mn0.3O2 cathode materials. Electrochim Acta 63:363–368. https://doi.org/10.1016/j.electacta.2011.12.121

    Article  CAS  Google Scholar 

  4. Xu B, Qian D, Wang Z, Meng YS (2012) Recent progress in cathode materials research for advanced lithium ion batteries. Mater Sci Eng R Rep 73(5-6):51–65. https://doi.org/10.1016/j.mser.2012.05.003

    Article  CAS  Google Scholar 

  5. Yan J, Liu X, Li B (2014) Recent progress in Li-rich layered oxides as cathode materials for Li-ion batteries. RSC Adv 4(108):63268–63284. https://doi.org/10.1039/C4RA12454E

    Article  CAS  Google Scholar 

  6. Jiang Q, Du K, He Y (2013) A novel method for preparation of LiNi1/3Mn1/3Co1/3O2 cathode material for Li-ion batteries. Electrochim Acta 107:133–138. https://doi.org/10.1016/j.electacta.2013.05.148

    Article  CAS  Google Scholar 

  7. Noh HJ, Youn S, Chong SY, Sun YK (2013) Comparison of the structural and electrochemical properties of layered Li[NixCoyMnz]O2 (x = 1/3, 0.5, 0.6, 0.7, 0.8 and 0.85) cathode material for lithium-ion batteries. J Power Sources 233:121–130. https://doi.org/10.1016/j.jpowsour.2013.01.063

    Article  CAS  Google Scholar 

  8. Huang Z, Wang Z, Zheng X, Guo H, Li X, Jing Q, Yang Z (2015) Effect of Mg doping on the structural and electrochemical performance of LiNi0.6Co0.2Mn0.2O2 cathode materials. Electrochim Acta 182:795–802. https://doi.org/10.1016/j.electacta.2015.09.151

    Article  CAS  Google Scholar 

  9. Wu H, Wang Z, Liu S, Zhang L, Zhang Y (2016) Chem Aust 2:1921–1928

    Google Scholar 

  10. Mo Y, Hou B, Li D, Jia X, Cao B, Yin L, Chen Y (2016) RSC Adv 6

  11. Rong H, Xu M, Zhu Y, Xie B, Lin H, Liao Y, Xing L, Li W (2016) J Power Sources 332:312–321. https://doi.org/10.1016/j.jpowsour.2016.09.016

    Article  CAS  Google Scholar 

  12. Jianming Zheng WHK, Manthiram A (2015) ACS Appl. Mater. Interfaces 7:6926–6934

    Article  Google Scholar 

  13. Shuang Li YY, Xie M, Zhang Q (2017) Rare Metals 36:277–283

    Article  Google Scholar 

  14. Yue Yang SL, Zhang Q, Zhang Y, Xu S (2017) Ind Eng Chem Res 56:175–182

    Article  Google Scholar 

  15. S.X. Yue Yang, Yinghe He, Waste Management, 2017 (2017)

  16. Yue Yang GH, Xie M, Xu S, He Y (2016) Synthesis and performance of spherical LiNixCoyMn1-x-yO2 regenerated from nickel and cobalt scraps. Hydrometallurgy 165:358–369. https://doi.org/10.1016/j.hydromet.2015.11.015

    Article  CAS  Google Scholar 

  17. Yang Yue XS, Ming X, Yinghe H, Guoyong H, Youcai Y (2015) Growth mechanisms for spherical mixed hydroxide agglomerates prepared by co-precipitation method: A case of Ni1/3Co1/3Mn1/3(OH)2. J Alloys Compd 619:846–853. https://doi.org/10.1016/j.jallcom.2014.08.152

    Article  CAS  Google Scholar 

  18. Jianming Zheng JX, Zhang J-G (2016) Nano Today 11:678–694

    Article  Google Scholar 

  19. Wang F, Zhang Y, Zou J, Liu W, Chen Y (2013) The structural mechanism of the improved electrochemical performances resulted from sintering atmosphere for LiNi0.5Co0.2Mn0.3O2 cathode material. Journal of Alloys & Compounds 558:172–178. https://doi.org/10.1016/j.jallcom.2013.01.091

    Article  CAS  Google Scholar 

  20. Tang Z, Wang Z, Li X, Peng W (2012) Influence of lithium content on the electrochemical performance of Li1+x(Mn0.533Ni0.233Co0.233)1−xO2 cathode materials. J Power Sources 208:237–241. https://doi.org/10.1016/j.jpowsour.2012.02.085

    Article  CAS  Google Scholar 

  21. Lee YM, Nam KM, Hwang EH, Kwon YG, Kang DH, Kim SS, Song SW (2014) Interfacial Origin of Performance Improvement and Fade for 4.6 V LiNi0.5Co0.2Mn0.3O2Battery Cathodes. J Phys Chem C 118(20):10631–10639. https://doi.org/10.1021/jp501670g

    Article  CAS  Google Scholar 

  22. Cho YH, Jang D, Yoon J, Kim H, Ahn TK, Nam KW, Sung YE, Kim WS, Lee YS, Yang XQ (2013) Thermal stability of charged LiNi0.5Co0.2Mn0.3O2 cathode for Li-ion batteries investigated by synchrotron based in situ X-ray diffraction. Journal of Alloys & Compounds 562:219–223. https://doi.org/10.1016/j.jallcom.2013.02.060

    Article  CAS  Google Scholar 

  23. Du QX, Tang ZF, Ma XH, Zang Y, Sun X, Shao Y, Wen ZY, Chen CH (2015) Improving the electrochemical properties of high-energy cathode material LiNi0.5Co0.2Mn0.3O2 by Zr doping and sintering in oxygen. Solid State Ionics 279:11–17. https://doi.org/10.1016/j.ssi.2015.07.006

    Article  CAS  Google Scholar 

  24. Li Y, Su Q, Han Q, Li P, Li L, Xu C, Cao X, Cao G (2014) Ceram Int 40(9):14933–14938. https://doi.org/10.1016/j.ceramint.2014.06.090

    Article  CAS  Google Scholar 

  25. Li Y, Han Q, Ming X, Ren M, Li L, Ye W, Zhang X, Xu H, Li L (2014) Ceram Int 40 (14933–14938

    Article  Google Scholar 

  26. Wang Y, Yang Z, Qian Y, Gu L, Zhou H (2015) Adv Mater 27(26):3915–3920. https://doi.org/10.1002/adma.201500956

    Article  CAS  PubMed  Google Scholar 

  27. Kong JZ, Zhou F, Wang CB, Yang XY, Zhai HF, Li H, Li JX, Tang Z, Zhang SQ (2013) Effects of Li source and calcination temperature on the electrochemical properties of LiNi0.5Co0.2Mn0.3O2 lithium-ion cathode materials. Journal of Alloys & Compounds 554:221–226. https://doi.org/10.1016/j.jallcom.2012.11.090

    Article  CAS  Google Scholar 

  28. Chen H, Hu Q, Huang Z, He Z, Wang Z, Guo H, Li X (2016) Ceram Int 42(1):263–269. https://doi.org/10.1016/j.ceramint.2015.08.104

    Article  CAS  Google Scholar 

  29. Ma H, Zhang S, Ji W, Tao Z, Chen J (2008) α-CuV2O6Nanowires: hydrothermal synthesis and primary lithium battery application. J Am Chem Soc 130(15):5361–5367. https://doi.org/10.1021/ja800109u

    Article  CAS  PubMed  Google Scholar 

  30. Wang D, Li X, Wang Z, Guo H, Xu Y, Fan Y, Ru J (2015) Electrochim Acta 188:48–56

    Article  Google Scholar 

  31. Ho CK, Raistrick ID, Huggins RA (1980) Application of A-C Techniques to the Study of Lithium Diffusion in Tungsten Trioxide Thin Films. J Electrochem Soc 127(2):343–350. https://doi.org/10.1149/1.2129668

    Article  CAS  Google Scholar 

  32. Huo ZQ, Cui YT, Wang D, Dong Y, Chen L (2014) The influence of temperature on a nutty-cake structural material: LiMn1−xFexPO4 composite with LiFePO4 core and carbon outer layer for lithium-ion battery. J Power Sources 245:331–336. https://doi.org/10.1016/j.jpowsour.2013.06.148

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are very grateful for the financial support from the Glorious Laurel Scholar Program of the Government of Guangxi Zhuang Autonomous Region, No.2011A025.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yunjiao Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xue, L., Li, Y., Han, Q. et al. Effect of high-temperature crystallization on the electrochemical properties of LiNi0.5Co0.2Mn0.3O2 synthesized from a lithiated transition metal oxide precursor. Ionics 24, 2957–2963 (2018). https://doi.org/10.1007/s11581-018-2467-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-018-2467-9

Keywords

Navigation