Advertisement

Ionics

pp 1–9 | Cite as

Synthesis of three-dimensional hierarchical porous carbon for high-performance supercapacitors

  • Wang Yang
  • Wu Yang
  • Lina Kong
  • Ailing Song
  • Xiujuan Qin
Original Paper

Abstract

Three-dimensional hierarchical porous carbons were synthesized by direct carbonization of glucose and zinc nitrate mixtures. The effects of carbonization temperature on the formation of the microscopic pore structure were studied. When tested in 6 M KOH by three-electrode system, the carbon sample carbonized at 750 °C shows the best electrochemical performance compared to the other samples. High specific capacitance (276 F g−1) is obtained at 0.3 A g−1, and the capacitance still maintains 205 F g−1 when tested at 10 A g−1. Moreover, the sample also possesses good cycling stability with only a loss of 3.7% after 10,000 cycles at 5 A g−1. The facile preparation method and hierarchical porous structure render this carbon material a promising candidate for high-performance supercapacitors application.

Keywords

Hierarchical porous carbon Carbonization temperature Supercapacitors 

Notes

Funding information

We are grateful for the financial support from the National Natural Science Foundation of China (No. 51674221) and the Postgraduate Innovation Project of Hebei Province (No. CXZZBS2017058).

References

  1. 1.
    Simon P, Gogotsi Y, Dunn B (2014) Where do batteries end and supercapacitors begin? Science 343(6176):1210–1211.  https://doi.org/10.1126/science.1249625CrossRefGoogle Scholar
  2. 2.
    Wang Y, Song Y, Xia Y (2016) Electrochemical capacitors: mechanism, materials, systems, characterization and applications. Chem Soc Rev 45(21):5925–5950.  https://doi.org/10.1039/C5CS00580ACrossRefGoogle Scholar
  3. 3.
    Huang P, Lethien C, Pinaud S, Brousse K, Laloo R, Turq V, Respaud M, Demortiere A, Daffos B, Taberna PL, Chaudret B, Gogotsi Y, Simon P (2016) On-chip and freestanding elastic carbon films for micro-supercapacitors. Science 351(6274):691–695.  https://doi.org/10.1126/science.aad3345CrossRefGoogle Scholar
  4. 4.
    Li X, Wei B (2013) Supercapacitors based on nanostructured carbon. Nano Energy 2(2):159–173.  https://doi.org/10.1016/j.nanoen.2012.09.008CrossRefGoogle Scholar
  5. 5.
    Yang W, Yang W, Song A, Gao L, Sun G, Shao G (2017) Pyrrole as a promising electrolyte additive to trap polysulfides for lithium-sulfur batteries. J Power Sources 348:175–182.  https://doi.org/10.1016/j.jpowsour.2017.03.008CrossRefGoogle Scholar
  6. 6.
    Zhang S, Yin B, Liu C, Wang Z, Gu D (2017) Self-assembling hierarchical NiCo2O4/MnO2 nanosheets and MoO3/PPy core-shell heterostructured nanobelts for supercapacitor. Chem Eng J 312:296–305.  https://doi.org/10.1016/j.cej.2016.11.144CrossRefGoogle Scholar
  7. 7.
    Zhang S, Yin B, Wang Z, Peter F (2016) Super long-life all solid-state asymmetric supercapacitor based on NiO nanosheets and α-Fe2O3 nanorods. Chem Eng J 306:193–203.  https://doi.org/10.1016/j.cej.2016.07.057CrossRefGoogle Scholar
  8. 8.
    Yang W, Yang W, Song A, Sun G, Shao G (2018) 3D interconnected porous carbon nanosheet/carbon nanotube as polysulfides reservoir for high performance lithium-sulfur batteries. Nanoscale.  https://doi.org/10.1039/C7NR06805K
  9. 9.
    Yin B, Wang Z, Zhang S, Liu C, Ren Q, Ke K (2016) In situ growth of free-standing all metal oxide asymmetric supercapacitor. ACS Appl Mater Interfaces 8(39):26019–26029.  https://doi.org/10.1021/acsami.6b08037CrossRefGoogle Scholar
  10. 10.
    Zhang S, Yin B, Liu C, Wang Z, Gu D (2017) A low-cost wearable yarn supercapacitor constructed by a highly bended polyester fiber electrode and flexible film. J Mater Chem A 5(29):15144–15153.  https://doi.org/10.1039/C7TA03697CCrossRefGoogle Scholar
  11. 11.
    Hao L, Li X, Zhi L (2013) Carbonaceous electrode materials for supercapacitors. Adv Mater 25(28):3899–3904.  https://doi.org/10.1002/adma.201301204CrossRefGoogle Scholar
  12. 12.
    Gu W, Yushin G (2014) Review of nanostructured carbon materials for electrochemical capacitor applications: advantages and limitations of activated carbon, carbide-derived carbon, zeolite-templated carbon, carbon aerogels, carbon nanotubes, onion-like carbon, and graphene. Wiley Interdiscip Rev Energy Environ 3:424–473CrossRefGoogle Scholar
  13. 13.
    Jiang H, Lee PS, Li C (2013) 3D carbon based nanostructures for advanced supercapacitors. Energy Environ Sci 6(1):41–53.  https://doi.org/10.1039/C2EE23284GCrossRefGoogle Scholar
  14. 14.
    Puthusseri D, Aravindan V, Madhavi S, Ogale S (2014) 3D micro-porous conducting carbon beehive by single step polymer carbonization for high performance supercapacitors: the magic of in situ porogen formation. Energy Environ Sci 7(2):728–735.  https://doi.org/10.1039/C3EE42551GCrossRefGoogle Scholar
  15. 15.
    Zhao Y, Liu M, Gan L, Ma X, Zhu D, Xu Z, Chen L (2014) Ultramicroporous carbon nanoparticles for the high-performance electrical double-layer capacitor electrode. Energy Fuel 28(2):1561–1568.  https://doi.org/10.1021/ef402070jCrossRefGoogle Scholar
  16. 16.
    Saha D, Li Y, Bi Z, Chen J, Keum JK, Hensley DK, Grappe HA, Meyer HM III, Dai S, Paranthaman MP, Naskar AK (2014) Studies on supercapacitor electrode material from activated lignin-derived mesoporous carbon. Langmuir 30(3):900–910.  https://doi.org/10.1021/la404112mCrossRefGoogle Scholar
  17. 17.
    Kim Y, Cho C-Y, Kang J-H, Cho Y-S, Moon JH (2012) Synthesis of porous carbon balls from spherical colloidal crystal templates. Langmuir 28(28):10543–10550.  https://doi.org/10.1021/la3021468CrossRefGoogle Scholar
  18. 18.
    Tang D, Hu S, Dai F, Yi R, Gordin ML, Chen S, Song J, Wang D (2016) Self-templated synthesis of mesoporous carbon from carbon tetrachloride precursor for supercapacitor electrodes. ACS Appl Mater Interfaces 8(11):6779–6783.  https://doi.org/10.1021/acsami.5b12164CrossRefGoogle Scholar
  19. 19.
    Zhang H, Su H, Zhang L, Zhang B, Chun F, Chu X, He W, Yang W (2016) Flexible supercapacitors with high areal capacitance based on hierarchical carbon tubular nanostructures. J Power Sources 331:332–339.  https://doi.org/10.1016/j.jpowsour.2016.09.064CrossRefGoogle Scholar
  20. 20.
    Wang C, O’Connell MJ, Chan CK (2015) Facile one-pot synthesis of highly porous carbon foams for high-performance supercapacitors using template-free direct pyrolysis. ACS Appl Mater Interfaces 7(16):8952–8960.  https://doi.org/10.1021/acsami.5b02453CrossRefGoogle Scholar
  21. 21.
    Hasegawa G, Kanamori K, Kiyomura T, Kurata H, Abe T, Nakanishi K (2016) Hierarchically porous carbon monoliths comprising ordered mesoporous nanorod assemblies for high-voltage aqueous supercapacitors. Chem Mater 28(11):3944–3950.  https://doi.org/10.1021/acs.chemmater.6b01261CrossRefGoogle Scholar
  22. 22.
    Yang W, Yang W, Kong L, Song A, Qin X, Shao G (2018) Phosphorus-doped 3D hierarchical porous carbon for high-performance supercapacitors: a balanced strategy for pore structure and chemical composition. Carbon 127:557–567.  https://doi.org/10.1016/j.carbon.2017.11.050CrossRefGoogle Scholar
  23. 23.
    Ma X, Liu M, Gan L, Zhao Y, Chen L (2013) Synthesis of micro- and mesoporous carbon spheres for supercapacitor electrode. J Solid State Electrochem 17(8):2293–2301.  https://doi.org/10.1007/s10008-013-2110-7CrossRefGoogle Scholar
  24. 24.
    Miao L, Zhu D, Zhao Y, Liu M, Duan H, Xiong W, Zhu Q, Li L, Lv Y, Gan L (2017) Design of carbon materials with ultramicro-, supermicro- and mesopores using solvent- and self-template strategy for supercapacitors. Microporous Mesoporous Mater 253:1–9.  https://doi.org/10.1016/j.micromeso.2017.06.032CrossRefGoogle Scholar
  25. 25.
    Wang D-W, Li F, Liu M, GQ L, Cheng H-M (2008) 3D aperiodic hierarchical porous graphitic carbon material for high-rate electrochemical capacitive energy storage. Angew Chem Int Ed 47(2):373–376.  https://doi.org/10.1002/anie.200702721CrossRefGoogle Scholar
  26. 26.
    Yang W, Yang W, Song A, Gao L, Su L, Shao G (2017) Supercapacitance of nitrogen-sulfur-oxygen co-doped 3D hierarchical porous carbon in aqueous and organic electrolyte. J Power Sources 359:556–567.  https://doi.org/10.1016/j.jpowsour.2017.05.108CrossRefGoogle Scholar
  27. 27.
    You B, Jiang J, Fan S (2014) Three-dimensional hierarchically porous all-carbon foams for supercapacitor. ACS Appl Mater Interfaces 6(17):15302–15308.  https://doi.org/10.1021/am503783tCrossRefGoogle Scholar
  28. 28.
    Liu Z, Mi J, Yang Y, Tan X, Lv C (2014) Easy synthesis of phosphorus-incorporated three-dimensionally ordered macroporous carbons with hierarchical pores and their use as electrodes for supercapacitors. Electrochim Acta 115:206–215.  https://doi.org/10.1016/j.electacta.2013.10.161CrossRefGoogle Scholar
  29. 29.
    Jiang J, Bao L, Qiang Y, Xiong Y, Chen J, Guan S, Chen J (2015) Sol-gel process-derived rich nitrogen-doped porous carbon through KOH activation for supercapacitors. Electrochim Acta 158:229–236.  https://doi.org/10.1016/j.electacta.2015.01.144CrossRefGoogle Scholar
  30. 30.
    Zhou J, Zhang Z, Xing W, Yu J, Han G, Si W, Zhuo S (2015) Nitrogen-doped hierarchical porous carbon materials prepared from meta-aminophenol formaldehyde resin for supercapacitor with high rate performance. Electrochim Acta 153:68–75.  https://doi.org/10.1016/j.electacta.2014.11.075CrossRefGoogle Scholar
  31. 31.
    Liu M, Chen L, Zhu D, Duan H, Xiong W, Xu Z, Gan L, Chen L (2016) Zinc tartrate oriented hydrothermal synthesis of microporous carbons for high performance supercapacitor electrodes. Chin Chem Lett 27(3):399–404.  https://doi.org/10.1016/j.cclet.2015.12.026CrossRefGoogle Scholar
  32. 32.
    Zhao Y, Huang S, Xia M, Rehman S, Mu S, Kou Z, Zhang Z, Chen Z, Gao F, Hou Y (2016) N-P-O co-doped high performance 3D graphene prepared through red phosphorous-assisted “cutting-thin” technique: a universal synthesis and multifunctional applications. Nano Energy 28:346–355.  https://doi.org/10.1016/j.nanoen.2016.08.053CrossRefGoogle Scholar
  33. 33.
    Su H, Zhang H, Liu F, Chun F, Zhang B, Chu X, Huang H, Deng W, Gu B, Zhang H, Zheng X, Zhu M, Yang W (2017) High power supercapacitors based on hierarchically porous sheet-like nanocarbons with ionic liquid electrolytes. Chem Eng J 322:73–81.  https://doi.org/10.1016/j.cej.2017.04.012CrossRefGoogle Scholar
  34. 34.
    Yang W, Yang W, Ding F, Sang L, Ma Z, Shao G (2017) Template-free synthesis of ultrathin porous carbon shell with excellent conductivity for high-rate supercapacitors. Carbon 111:419–427.  https://doi.org/10.1016/j.carbon.2016.10.025CrossRefGoogle Scholar
  35. 35.
    Su F, Poh CK, Chen JS, Xu G, Wang D, Li Q, Lin J, Lou XW (2011) Nitrogen-containing microporous carbon nanospheres with improved capacitive properties. Energy Environ Sci 4(3):717–724.  https://doi.org/10.1039/C0EE00277ACrossRefGoogle Scholar
  36. 36.
    Jawhari T, Roid A, Casado J (1995) Raman spectroscopic characterization of some commercially available carbon black materials. Carbon 33(11):1561–1565.  https://doi.org/10.1016/0008-6223(95)00117-VCrossRefGoogle Scholar
  37. 37.
    Thommes M, Kaneko K, Neimark AV, Olivier JP, Rodriguez-Reinoso F, Rouquerol J, Sing KS (2015) Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC technical report). Pure Appl Chem 87:1051–1069CrossRefGoogle Scholar
  38. 38.
    Qian J, Liu M, Gan L, Tripathi P, Zhu D, Xu Z, Hao Z, Chen L, Wright D (2013) A seeded synthetic strategy for uniform polymer and carbon nanospheres with tunable sizes for high performance electrochemical energy storage. Chem Commun 49(29):3043–3045.  https://doi.org/10.1039/c3cc41113cCrossRefGoogle Scholar
  39. 39.
    Vatamanu J, Bedrov D (2015) Capacitive energy storage: current and future challenges. J Phys Chem Lett 6(18):3594–3609.  https://doi.org/10.1021/acs.jpclett.5b01199CrossRefGoogle Scholar
  40. 40.
    Mao Y, Duan H, Xu B, Zhang L, Hu Y, Zhao C, Wang Z, Chen L, Yang Y (2012) Lithium storage in nitrogen-rich mesoporous carbon materials. Energy Environ Sci 5(7):7950–7955.  https://doi.org/10.1039/c2ee21817hCrossRefGoogle Scholar
  41. 41.
    Weingarth D, Cericola D, Mornaghini FCF, Hucke T, Kötz R (2014) Carbon additives for electrical double layer capacitor electrodes. J Power Sources 266:475–480.  https://doi.org/10.1016/j.jpowsour.2014.05.065CrossRefGoogle Scholar
  42. 42.
    Zhang L, Yang X, Zhang F, Long G, Zhang T, Leng K, Zhang Y, Huang Y, Ma Y, Zhang M, Chen Y (2013) Controlling the effective surface area and pore size distribution of sp2 carbon materials and their impact on the capacitance performance of these materials. J Am Chem Soc 135(15):5921–5929.  https://doi.org/10.1021/ja402552hCrossRefGoogle Scholar
  43. 43.
    Li Y, Wang G, Wei T, Fan Z, Yan P (2016) Nitrogen and sulfur co-doped porous carbon nanosheets derived from willow catkin for supercapacitors. Nano Energy 19:165–175.  https://doi.org/10.1016/j.nanoen.2015.10.038CrossRefGoogle Scholar
  44. 44.
    Justin P, Meher SK, Rao GR (2010) Tuning of capacitance behavior of NiO using anionic, cationic, and nonionic surfactants by hydrothermal synthesis. J Phys Chem C 114(11):5203–5210.  https://doi.org/10.1021/jp9097155CrossRefGoogle Scholar
  45. 45.
    Chmiola J, Yushin G, Dash R, Gogotsi Y (2006) Effect of pore size and surface area of carbide derived carbons on specific capacitance. J Power Sources 158(1):765–772.  https://doi.org/10.1016/j.jpowsour.2005.09.008CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Wang Yang
    • 1
    • 2
  • Wu Yang
    • 1
  • Lina Kong
    • 1
  • Ailing Song
    • 1
  • Xiujuan Qin
    • 1
    • 2
  1. 1.Hebei Key Laboratory of Applied Chemistry, College of Environmental and Chemical EngineeringYanshan UniversityQinhuangdaoChina
  2. 2.State key Laboratory of Metastable Materials Science and TechnologyYanshan UniversityQinhuangdaoChina

Personalised recommendations