Skip to main content
Log in

Anatase TiO2 nanoparticles for lithium-ion batteries

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

Anatase TiO2 nanoparticles were prepared by a simple sol-gel method at moderate temperature. X-ray powder diffraction (XRD) and Raman spectroscopy revealed the exclusive presence of anatase TiO2 without impurities such as rutile or brookite TiO2. Thermogravimetric analysis confirmed the formation of TiO2 at about 400 °C. Particle size of about 20 nm observed by transmission electron microscopy matches well with the dimension of crystallites calculated from XRD. The electrochemical tests of the sol-gel-prepared anatase TiO2 show promising results as electrode for lithium-ion batteries with a stable specific capacity of 174 mAh g−1 after 30 cycles at C/10 rate. The results show that improvement of the electrochemical properties of TiO2 to reach the performance required for use as an electrode for lithium-ion batteries requires not only nanosized porous particles but also a morphology that prevents the self-aggregation of the particles during cycling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Han B, Kim KJ, Hwang BM, Kim SB, Park KW (2013) Single-crystalline rutile TiO2 nanowires for improved lithium ion intercalation properties. J Power Sources 222:225–229. https://doi.org/10.1016/j.jpowsour.2012.08.073

    Article  CAS  Google Scholar 

  2. Liu CL, Wang Y, Zhang C, Li XS, Dong WS (2014) In situ synthesis of α-MoO3/graphene composites as anode materials for lithium ion battery. Mater Chem Phys 143(3):1111–1118. https://doi.org/10.1016/j.matchemphys.2013.11.011

    Article  CAS  Google Scholar 

  3. Julien CM, Mauger A, Vijh A, Zaghib K (2016) Lithium batteries: science and technology. Springer, Cham, 630 pages. https://doi.org/10.1007/978-3-319-19108-9

    Book  Google Scholar 

  4. Doh CH, Kim DH, Kim HS, Shin HM, Jeong YD, Moon SI, Jin BS, Eom SW, Kim HS, Kim KW, Oh DH, Veluchamy A (2008) Thermal and electrochemical behavior of C/LixCoO2 cell during safety test. J Power Sources 175(2):881–885. https://doi.org/10.1016/j.jpowsour.2007.09.102

    Article  CAS  Google Scholar 

  5. Endo M, Kim C, Nishimura K, Fujino T, Miyashita K (2000) Recent development of carbon materials for Li ion batteries. Carbon 38(2):183–197. https://doi.org/10.1016/S0008-6223(99)00141-4

    Article  CAS  Google Scholar 

  6. Qiao H, Xiao L, Zhang L (2008) Phosphatization: a promising approach to enhance the performance of mesoporous TiO2 anode for lithium ion batteries. Electrochem Commun 10(4):616–620. https://doi.org/10.1016/j.elecom.2008.02.010

    Article  CAS  Google Scholar 

  7. Huang XH, Tu JP, Zhang CQ, Xiang JY (2007) Net-structured NiO–C nanocomposite as Li-intercalation electrode material. Electrochem Commun 9(5):1180–1184. https://doi.org/10.1016/j.elecom.2007.01.014

    Article  CAS  Google Scholar 

  8. Oh SW, Bang HJ, Bae YC, Sun YK (2007) Effect of calcination temperature on morphology, crystallinity and electrochemical properties of nano-crystalline metal oxides (Co3O4, CuO, and NiO) prepared via ultrasonic spray pyrolysis. J Power Sources 173(1):502–509. https://doi.org/10.1016/j.jpowsour.2007.04.087

    Article  CAS  Google Scholar 

  9. Chen G, Rodriguez R, Fei L, Xu Y, Deng S, Smirnov S, Luo H (2014) A facile hydrothermal route to iron(III) with conductive additives as composite anode for lithium ion batteries. J Power Sources 259:227–232. https://doi.org/10.1016/j.jpowsour.2014.02.096

    Article  CAS  Google Scholar 

  10. Xu Y, Jian G, Liu Y, Zhu Y, Zachariah MR, Wang C (2014) Superior electrochemical performance and structure evolution of mesoporous Fe2O3 anodes for lithium-ion batteries. Nano Energy 3:26–35. https://doi.org/10.1016/j.nanoen.2013.10.003

    Article  CAS  Google Scholar 

  11. Oh HD, Lee SW, Kim SO, Lee JK (2013) Facile synthesis of carbon layer-entangled Fe2O3 clusters as anode materials for improved Li-ion batteries. J Power Sources 244:575–580. https://doi.org/10.1016/j.jpowsour.2013.01.120

    Article  CAS  Google Scholar 

  12. Jiang Y, Zhang D, Li Y, Yuan T, Bahlawane N, Liang C, Sun W, Lu Y, Yan M (2014) AmorphousFe2O3 as a high-capacity, high-rate and long-life anode material for lithium ion batteries. Nano Energy 4:23–30. https://doi.org/10.1016/j.nanoen.2013.12.001

    Article  CAS  Google Scholar 

  13. Casino S, Di Lupo F, Francia C, Tuel A, Bodoardo S, Gerbaldi C (2014) Surfactant-assisted sol gel preparation of high-surface area mesoporous TiO2 nanocrystalline Li-ion battery anodes. J Alloys Compd 594:114–121. https://doi.org/10.1016/j.jallcom.2014.01.111

    Article  CAS  Google Scholar 

  14. Di Lupo F, Tuel A, Mendez V, Francia C, Meligrana G, Bodoardo S, Gerbaldi C (2014) Mesoporous TiO2 nanocrystals produced by a fast hydrolytic process as high-rate long-lasting Li-ion battery anodes. Acta Mater 69:60–67. https://doi.org/10.1016/j.actamat.2014.01.057

    Article  CAS  Google Scholar 

  15. Wang D, Wu X, Zhang Y, Wang J, Yan P, Zhang C, He D (2014) The influence oftheTiO2 particle size on the properties of Li4Ti5O12 anode material for lithium-ion battery. Ceram Int 40(2):3799–3804. https://doi.org/10.1016/j.ceramint.2013.09.038

    Article  CAS  Google Scholar 

  16. Usui H, Wasada K, Shimizu M, Sakaguchi H (2013) TiO2/Si composites synthesized by sol–gel method and their improved electrode performance as Li-ion battery anodes. Electrochim Acta 111:575–580. https://doi.org/10.1016/j.electacta.2013.08.015

    Article  CAS  Google Scholar 

  17. Yan Y, Wang J, Chang Q, Babikier M, Wang H, Li H, Yu Q, Gao S, Jiao S (2013) Fabrication of mesoporous TiO2 electrodes by chemical technique for dye-sensitized solar cells. Electrochim Acta 94:277–284. https://doi.org/10.1016/j.electacta.2013.02.019

    Article  CAS  Google Scholar 

  18. Chen CL, Chang TW, Su SC, Teng H, Lee YL (2014) High performance solid-state dye-sensitized solar cells based on poly(acrylonitrile-co-vinyl acetate)/TiO2 nanoparticles redox electrolytes. J Power Sources 247:406–411. https://doi.org/10.1016/j.jpowsour.2013.08.117

    Article  CAS  Google Scholar 

  19. Hong CK, Jung YH, Kim HJ, Park KH (2014) Electrochemical properties of TiO2 nanoparticle/nanorod composite photoanode for dye-sensitized solar cells. Curr Appl Phys 14(3):294–299. https://doi.org/10.1016/j.cap.2013.12.003

    Article  Google Scholar 

  20. Xiong J, Yang B, Zhou C, Yang J, Duan H, Huang W, Zhang X, Xia X, Zhang L, Huang H, Gao Y (2014) Enhanced efficiency and stability of polymer solar cells with TiO2 nanoparticles buffer layer. Org Electron 15(4):835–843. https://doi.org/10.1016/j.orgel.2014.01.024

    Article  CAS  Google Scholar 

  21. Umar AA, Nafisah S, Saad SKM, Tan ST, Balouch A, Salleh M, Oyama M (2014) Pori ferous microtablet of anatase TiO2 growth on an ITO surface for high efficiency dye-sensitized solar cells. Sol Energy Mater Sol Cells 122:174–182. https://doi.org/10.1016/j.solmat.2013.12.002

    Article  CAS  Google Scholar 

  22. Zhang S, Zhang S, Peng B, Wang H, Yu H, Wang H, Peng F (2014) High performance hydrogenated TiO2 nanorod arrays as a photoelectrochemical sensor for organic compounds under visible light. Electrochem Commun 40:24–27. https://doi.org/10.1016/j.elecom.2013.12.013

    Article  CAS  Google Scholar 

  23. Lee HU, Lee SC, Lee SM, Lee JW, Kim HJ, Lee J (2013) Improved photocatalytic and antibacterial activities of three-dimensional polycrystalline anatase TiO2 photocatalysts. Appl Catal A 467:394–399. https://doi.org/10.1016/j.apcata.2013.07.042

    Article  CAS  Google Scholar 

  24. Lee AC, Lin RH, Yang CY, Lin MH, Wang WY (2008) Preparations and characterization of novel photocatalysts with mesoporous titanium dioxide (TiO2) via a sol–gel method. Mater Chem Phys 109(2-3):275–280. https://doi.org/10.1016/j.matchemphys.2007.11.016

    Article  CAS  Google Scholar 

  25. Xie Y, Wu Z, Wu Q, Liu M, Piao L (2014) Effect of different base structures on the performance of the hierarchical TiO2 photocatalysts. Catal Today 225:74–79. https://doi.org/10.1016/j.cattod.2013.11.025

    Article  CAS  Google Scholar 

  26. Lee HU, Lee SC, Cho SH, Son B, Lee SJ, Kim HJ, Lee J (2013) Highly visible-light active nanoporous TiO2 photocatalysts for efficient solar photocatalytic applications. Appl Catal B Environ 129:106–113. https://doi.org/10.1016/j.apcatb.2012.09.010

    Article  CAS  Google Scholar 

  27. Zhang L, Xu L, Wang J, Cai J, Xu J, Zhou H, Zhong Y, Chen D, Zhang J, Cao CN (2012) Enhanced energy storage of a UV-irradiated three-dimensional nanostructured TiO2–Ni(OH)2 composite film and its electrochemical discharge in the dark. J Electroanal Chem 683:55–61. https://doi.org/10.1016/j.jelechem.2012.07.041

    Article  CAS  Google Scholar 

  28. Rai AK, Anh LT, Gim J, Mathew V, Kang J, Paul BJ, Song J, Kim J (2013) Simple synthesis and particle size effects of TiO2 nanoparticle anodes for rechargeable lithium ion batteries. Electrochim Acta 90:112–118. https://doi.org/10.1016/j.electacta.2012.11.104

    Article  CAS  Google Scholar 

  29. Yang X, Teng D, Liu B, Yu Y, Yang X (2011) Nanosized anatase titanium dioxide loaded porous carbon nanofiber webs as anode materials for lithium-ion batteries. Electrochem Commun 13(10):1098–1101. https://doi.org/10.1016/j.elecom.2011.07.007

    Article  CAS  Google Scholar 

  30. Oh SW, Park SH, Sun YK (2006) Hydrothermal synthesis of nano-sized anatase TiO2 powders for lithium secondary anode materials. J Power Sources 161(2):1314–1318. https://doi.org/10.1016/j.jpowsour.2006.05.050

    Article  CAS  Google Scholar 

  31. Subramanian V, Karki A, Gnanasekar KI, Eddy FP, Rambabu B (2006) Nanocrystalline TiO2 (anatase) for Li-ion batteries. J Power Sources 159(1):186–192. https://doi.org/10.1016/j.jpowsour.2006.04.027

    Article  CAS  Google Scholar 

  32. Liu G, Qu J, Wang H (2013) Morphology-control synthesis and electrochemical performance of titanate and anatase TiO2. J Alloys Compd 578:345–348. https://doi.org/10.1016/j.jallcom.2013.06.044

    Article  CAS  Google Scholar 

  33. Choi MG, Lee YG, Song SW, Kim KM (2010) Lithium-ion battery anode properties of TiO2 nanotubes prepared by the hydrothermal synthesis of mixed (anatase and rutile) particles. Electrochim Acta 55(20):5975–5983. https://doi.org/10.1016/j.electacta.2010.05.052

    Article  CAS  Google Scholar 

  34. Lin KS, Cheng HW, Chen WR, Wu JF (2010) Synthesis, characterization and application of anatase-typed titania nanoparticles. J Environ Eng Manag 20:69–76

    CAS  Google Scholar 

  35. Deedar N, Irfan A, Ishtiaq Q (2009) Evaluation of the adsorption potential of titanium dioxide nanoparticles for arsenic removal. J Environ Sci 21:402–408

    Article  Google Scholar 

  36. Li Z, Hong L, Guo B (2005) Physicochemical and electrochemical characterization of anatase titanium dioxide nanoparticles. J Power Sources 143(1-2):231–235. https://doi.org/10.1016/j.jpowsour.2004.11.056

    Article  CAS  Google Scholar 

  37. Kun G (2007) Strongly intrinsic anharmonicity in the low-frequency Raman mode in nanocrystalline anatase TiO2. Physica B 398:33–37

    Article  Google Scholar 

  38. Orendorz A, Brodyanski A, Losch J, Bai LH, Chen ZH, Le YK, Ziegler C, Gnaser H (2007) Phase transformation and particle growth in nanocrystalline anatase TiO2 films analyzed by X-ray diffraction and Raman spectroscopy. Surf Sci 601(18):4390–4394. https://doi.org/10.1016/j.susc.2007.04.127

    Article  CAS  Google Scholar 

  39. Cheng G, Akhtar MS, Yang O-B, Stadler FJ (2013) Structure modification of anatase TiO2 nanomaterials-based photoanodes for efficient dye-sensitized solar cells. Electrochim Acta 113:527–535. https://doi.org/10.1016/j.electacta.2013.09.085

    Article  CAS  Google Scholar 

  40. Exnar I, Kavan L, Huang SY, Gratzel M (1997) Novel 2 V rocking-chair lithium battery based on nano-crystalline titanium dioxide. J Power Sources 68(2):720–722. https://doi.org/10.1016/S0378-7753(96)02581-5

    Article  CAS  Google Scholar 

  41. Kavan L, Tathousky J, Gratzel M, Shklover V, Zukal A (2000) Surfactant-templated TiO2 (anatase), characteristic features of lithium insertion electrochemistry in organized nanostructures. J Phys Chem B 104(50):12012–12020. https://doi.org/10.1021/jp003609v

    Article  CAS  Google Scholar 

  42. Cava RJ, Murphy DW, Zahurak S, Santoro A, Roth RS (1984) The crystal structures of the lithium-inserted metal oxides Li0.5TiO2 anatase, LiTi2O4. J Solid State Chem 53(1):64–75. https://doi.org/10.1016/0022-4596(84)90228-7

    Article  CAS  Google Scholar 

  43. Yang Z, Choi D, Kerisit S, Rosso KM, Wang D, Zhang J, Graff G, Liu J (2009) Nanostructures and lithium electrochemical reactivity of lithium titanites and tinanium oxides. J Power Sources 192(2):588–598. https://doi.org/10.1016/j.jpowsour.2009.02.038

    Article  CAS  Google Scholar 

  44. Kim J, Cho J (2007) Rate characteristics of anatase TiO2 nanotubes and nanorods for lithium battery anode materials at room temperature. J Electrochem Soc 154(6):A542–A546. https://doi.org/10.1149/1.2724756

    Article  CAS  Google Scholar 

  45. Luttrell T, Halpegamage S, Tao J, Kramer A, Sutter E, Batzill M (2014) Why is anatase a better photocatalyst than rutile? Model studies on epitaxial TiO2 films. Sci Rep 4:4043

    Article  Google Scholar 

  46. Brinker CJ, Hurd AJ, Schunk PR, Frye GC, Ashley CS (1992) Review of sol-gel thin film formation. J Non-Cryst Solids 147-148:424–436. https://doi.org/10.1016/S0022-3093(05)80653-2

    Article  CAS  Google Scholar 

  47. Tan L, Cao C, Yang H, Wang B, Li L (2013) Nitrogen-doped carbon coated TiO2 anode material for lithium-ion batteries. Mater Lett 109:195–198. https://doi.org/10.1016/j.matlet.2013.07.043

    Article  CAS  Google Scholar 

  48. Levi MD, Salitra G, Markovsky B, Teller H, Aurbach D, Heider U, Heider L (1999) Solid-state electrochemical kinetics of Li-ion intercalation into Li1-xCoO2: simultaneous application of electroanalytical techniques SSCV, PITT, and EIS. J Electrochem Soc 146(4):1279–1289. https://doi.org/10.1149/1.1391759

    Article  CAS  Google Scholar 

  49. Kanamura K, Yuasa K, Takehara Z (1987) Diffusion of lithium in the TiO2 cathode of a lithium battery. J Power Sources 20(1-2):127–134. https://doi.org/10.1016/0378-7753(87)80101-5

    Article  CAS  Google Scholar 

  50. Cantao MP, Cisneros JI, Torresi RM (1994) Kinetic study of lithium electroinsertion in titanium oxide thin films. J Phys Chem 98(18):4865–4869. https://doi.org/10.1021/j100069a016

    Article  CAS  Google Scholar 

  51. Lindstrom H, Sodergren S, Solbrand A, Rensmo H, Hjelm J, Hagfeldt A, Lindquist S (1997) Li+ ion insertion in TiO2 (anatase). 2. Voltammetry on nanoporous films. J Phys Chem B 101(39):7717–7722. https://doi.org/10.1021/jp970490q

    Article  Google Scholar 

  52. Lindstrom H, Sodergren S, Solbrand A, Rensmo H, Hjelm J, Hagfeldt A, Lindquist S (1997) Li+ ion insertion in TiO2 (anatase). 1. Chronoamperometry on CVD films and nanoporous films. J Phys Chem B 101(39):7710–7716. https://doi.org/10.1021/jp970489r

    Article  Google Scholar 

  53. Kavan L, Grätzel M, Gilbert SE, Klemenz C, Scheel HJ (1996) Electrochemical and photoelectrochemical investigation of single-crystal anatase. J Am Chem Soc 118(28):6716–6723. https://doi.org/10.1021/ja954172l

    Article  CAS  Google Scholar 

  54. Wagemaker M, Van de Krol R, Kentgens APM, van Well AA, Mulder FM (2001) Two phase morphology limits lithium diffusion in TiO2 (anatase): a 7Li MAS NMR study. J Am Chem Soc 123(46):11454–11461. https://doi.org/10.1021/ja0161148

    Article  CAS  PubMed  Google Scholar 

  55. Dylla AG, Lee JA, Stevenson KJ (2012) Influence of mesoporosity on lithium-ion storage capacity and rate performance of nanostructured TiO2(B). Langmuir 28(2012):2897–2903. https://doi.org/10.1021/la2037229

    Article  CAS  PubMed  Google Scholar 

  56. Zec N, Cvjeticanin N, Bester-Rogac M, Vranes M, Gadzuric S (2017) Electrochemical performance of anatase TiO2 nanotube arrays electrode in ionic liquid based electrolyte for lithium ion batteries. J Electrochem Soc 164(8):H5100–H5107. https://doi.org/10.1149/2.0051708jes

    Article  CAS  Google Scholar 

  57. Tan L, Pan L, Cao C, Wang B, Li L (2014) Nitrogen-doped carbon coated TiO2 nanocomposites as anode material to improve cycle life for lithium-ion batteries. J Power Sources 253:193–200. https://doi.org/10.1016/j.jpowsour.2013.12.059

    Article  CAS  Google Scholar 

  58. Liu Y, Yang Y (2016) Recent progress of TiO2-based anodes for Li ion batteries, J. Nano 2016:8123652

    Google Scholar 

  59. Fu Y, Ming H, Zhou Q, Jin L, Li X, Zheng J (2014) Nitrogen-doped carbon coating inside porous TiO2 using small nitrogen-containing molecules for improving performance of lithium-ion batteries. Electrochim Acta 134:478–485. https://doi.org/10.1016/j.electacta.2014.04.130

    Article  CAS  Google Scholar 

  60. Li S, Ge P, Zhang C, Sun W, Hou H, Ji X (2017) The electrochemical exploration of double carbon-wrapped Na3V2(PO4)3: towards long-time cycling and superior rate sodium-ion battery cathode. J Power Sources 366:249–258. https://doi.org/10.1016/j.jpowsour.2017.09.032

    Article  CAS  Google Scholar 

  61. Ge P, Cao X, Hou H, Li S, Ji X (2017) Rod like Sb2Se3 wrapped with carbon: the exploring of electrochemical properties in sodium-ion batteries. ACS Appl Mater Interfaces 9(40):34979–34989. https://doi.org/10.1021/acsami.7b10886

    Article  CAS  PubMed  Google Scholar 

  62. Ge P, Hou H, Ji X, Huang Z, Li S, Huang L (2018) Enhanced stability of sodium storage exhibited by carbon coated Sb2S3 hollow spheres. Mater Chem Phys 203:185–192. https://doi.org/10.1016/j.matchemphys.2017.10.003

    Article  CAS  Google Scholar 

  63. Zhou W, Sun F, Pan K, Tian G, Jiang B, Ren Z, Tian C, Fu H (2011) Well-ordered large-pore mesoporous anatase TiO2 with remarkably high thermal stability and improved crystallinity: preparation, characterization, and photocatalytic performance. Adv Func Mater 21(2011):1922–1930. https://doi.org/10.1002/adfm.201002535

    Article  CAS  Google Scholar 

  64. Bai X, Li T, Qi YX, Wang YX, Yin LW, Li H, Lun N, Bai YJ (2016) One-step fabricating nitrogen-doped TiO2 nanoparticles coated with carbon to achieve excellent high-rate lithium storage performance. Electrochim Acta 187:389–396. https://doi.org/10.1016/j.electacta.2015.11.094

    Article  CAS  Google Scholar 

  65. Bresser D, Kim G-T, Binetti E, Striccoli M, Comparelli R, Seidel S, Ozkaya D, Copley M, Bishop P, Paillard E, Passerini S (2015) Transforming anatase TiO2 nanorods into ultrafine nanoparticles for advanced electrochemical performance. J Power Sources 294:406–413. https://doi.org/10.1016/j.jpowsour.2015.06.089

    Article  CAS  Google Scholar 

  66. Patra S, Davoisne C, Bouyanfif H, Foix D, Sauvage F (2015) Phase stability frustration on ultra-nanosized anatase TiO2. Sci Rep 5(1):10928. https://doi.org/10.1038/srep10928

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Patra S, Davoisne C, Bruyre S, Bouyanfif H, Cassaignon S, Taberna P-L, Sauvage F (2013) Room-temperature synthesis of high surface area anatase TiO2 exhibiting a complete lithium insertion solid solution. Part Part Syst Charact 30(12):1093–1104. https://doi.org/10.1002/ppsc.201300178

    Article  CAS  Google Scholar 

  68. Zaghib K, Mauger A, Gendron F, Julien CM (2008) Surface effects on the physical and electrochemical properties of thin LiFePO4 particles. Chem Mater 20(2):462–469. https://doi.org/10.1021/cm7027993

    Article  CAS  Google Scholar 

  69. Zaghib K, Charest P, Dontigny M, Guerfi A, Lagac M, Mauger A, Kopec M, Julien CM (2010) LiFePO4: from molten ingot to nanoparticles with high-rate performance in Li-ion batteries. J Power Sources 195(24):8280–8288. https://doi.org/10.1016/j.jpowsour.2010.07.010

    Article  CAS  Google Scholar 

  70. Trudeau ML, Laul D, Veillette R, Serventi AM, Mauger A, Julien CM, Zaghib K (2011) In situ high-resolution transmission electron microscopy synthesis observation of nanostructured carbon coated LiFePO4. J Power Sources 196:7386–7394

    Article  Google Scholar 

  71. Guo BJ, Yu K, Fu H, Hua QQ, Qi RJ, Li HL, Song HL, Guo S, Zhu ZQ (2015) Firework-shaped TiO2 microspheres embedded with few-layer MoS2 as an anode material for excellent performance lithium-ion batteries. J Mater Chem A 3(12):6392–6401. https://doi.org/10.1039/C4TA06607C

    Article  CAS  Google Scholar 

  72. Yu XY, Wu HB, Yu L, Ma FX, Lou XW (2015) Rutile TiO2 submicroboxes with superior lithium storage properties. Angew Chem 54(13):4001–4004. https://doi.org/10.1002/anie.201411353

    Article  CAS  Google Scholar 

  73. Tian Q, Zhang Z, Yang L, Hirano SI (2015) Morphology-engineered and TiO2(B)-introduced anatase TiO2 as an advanced anode material for lithium-ion batteries. J Mater Chem A 3(28):14721–14730. https://doi.org/10.1039/C5TA03598H

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. M. Julien.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

El-Deen, S.S., Hashem, A.M., Abdel Ghany, A.E. et al. Anatase TiO2 nanoparticles for lithium-ion batteries. Ionics 24, 2925–2934 (2018). https://doi.org/10.1007/s11581-017-2425-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-017-2425-y

Keywords

Navigation