Advertisement

Ionics

, Volume 23, Issue 11, pp 3249–3254 | Cite as

Large-scale production of Cu3P nanocrystals for ultrahigh-rate supercapacitor

  • Yuhong Jin
  • Chenchen Zhao
  • Yu Wang
  • Qianlei Jiang
  • Changwei Ji
  • Mengqiu Jia
Short Communication
  • 306 Downloads

Abstract

The fast development of supercapacitors inspires a growing interest in inexpensive super-capacitive electrode material with high performance. Herein, we develop a Rone step method for preparing Cu3P nanocrystals by direct low-temperature phosphorization treatment of commercial copper powder. As a super-capacitive electrode material, for the first time, Cu3P nanocrystals exhibit outstanding electrochemical rate performance (318.5 F g−1 at 400 mV s−1; 169.2 F g−1 at 50 A g−1) and excellent cycling stability with no loss of specific capacitance at 10 A g−1 for 10,000 cycles. The presented synthesis method opens up a facile and large-scale approach to explore high-performance and low-cost Cu3P electrodes for supercapacitors.

Keywords

Cu3Nanocrystalline materials Ultrahigh-rate Energy storage and conversion 

Notes

Acknowledgements

We thank the Science and Technology Program of Beijing Municipal Education Commission (SQKM201710005007) and Basic Research Foundation of Beijing University of Technology (105000546317500).

References

  1. 1.
    Zhang LL, Zhao XS (2009) Carbon-based materials as supercapacitor electrodes. Chem Soc Rev 38:2520–2531CrossRefGoogle Scholar
  2. 2.
    Simon P, Gogotsi Y (2008) Materials for electrochemical capacitors. Nat Mater 7:845–854CrossRefGoogle Scholar
  3. 3.
    Zeng Y, Li X, Jiang S, He S, Fang H, Hou H (2015) Free-standing mesoporous electrospun carbon nanofiber webs without activation and their electrochemical performance. Mater Lett 161:587–590CrossRefGoogle Scholar
  4. 4.
    Hu C, He S, Jiang S, Chen S, Hou H (2015) Natural source derived carbon paper supported conducting polymer nanowire arrays for high performance supercapacitors. RSC Adv 5:14441–14447CrossRefGoogle Scholar
  5. 5.
    Yu J, Lu W, Smith JP, Booksh KS, Meng L, Huang Y, Li Q, Byun J, Oh Y, Yan Y, Chou T (2017) A high performance stretchable asymmetric fiber-shaped supercapacitor with a core-sheath helical structure. Adv Energy Mater 7:1600976CrossRefGoogle Scholar
  6. 6.
    Hou Y, Zhang B (2016) Recent advances in transition metal phosphide nanomaterials: synthesis and applications in hydrogen evolution reaction. Chem Soc Rev 45:1529–1541CrossRefGoogle Scholar
  7. 7.
    Lu Y, Wang T, Li X, Zhang G, Xue H, Pang H (2016) Synthetic methods and electrochemical applications for transition metal phosphide nanomaterials. RSC Adv 6:87188–87212CrossRefGoogle Scholar
  8. 8.
    Du W, Wei S, Zhou K, Guo J, Pang H, Qian X (2015) One-step synthesis and graphene-modification to achieve nickel phosphide nanoparticles with electrochemical properties suitable for supercapacitors. Mater Res Bull 61:333–339CrossRefGoogle Scholar
  9. 9.
    Zhou K, Zhou W, Yang L, Lu J, Cheng S, Mai W, Tang Z, Li L, Chen S (2015) Ultrahigh-performance pseudocapacitor electrodes based on transition metal phosphide nanosheets array via phosphorization: a general and effective approach. Adv Funct Mater 25:7530–7538CrossRefGoogle Scholar
  10. 10.
    Mauvernay B, Bichat MP, Favier F, Morcrette L, Doublet ML (2005) Progress in the lithium insertion mechanism in Cu3P. Ionics 11:36–45CrossRefGoogle Scholar
  11. 11.
    An C, Wang Y, Wang Y, Liu G, Li L, Qiu F, Xu Y, Jiao L, Yuan H (2013) Facile synthesis and superior supercapacitor performances of Ni2P/rGO nanoparticles. RSC Adv 3:4682–4633Google Scholar
  12. 12.
    Chen X, Cheng M, Chen D, Wang R (2016) Shape-controlled synthesis of Co2P nanostructures and their application in supercapacitors. ACS Appl Mater Interfaces 8:3892–3900CrossRefGoogle Scholar
  13. 13.
    Hu Y, Liu M, Yang Q, Kong L, Kong L (2017) Facile synthesis of high electrical conductive CoP via solid-state synthetic routes for supercapacitors. J Energy Chem 26:49–55CrossRefGoogle Scholar
  14. 14.
    Liu S, Qian Y, Xu L (2009) Synthesis and characterization of hollow spherical copper phosphide (Cu3P) nanopowders. Solid State Commun 149:438–440CrossRefGoogle Scholar
  15. 15.
    Bichat M, Politova T, Pfeiffer H, Tancret F, Monconduit L, Pascai J, Brousse T, Favier F (2004) Cu3P as anode material for lithium ion battery: powder morphology and electrochemical performances. J Power Sources 136:80–87CrossRefGoogle Scholar
  16. 16.
    Pfeiffer H, Tancret F, Bichat M, Monconduit L, Favier F, Brousse T (2004) Air stable copper phosphide (Cu3P): a possible negative electrode material for lithium batteries. Electrochem Commun 6:263–267CrossRefGoogle Scholar
  17. 17.
    Tian J, Liu Q, Cheng N, Asiri A, Sun X (2014) Self-supported Cu3P nanowire arrays as an integrated high-performance three-dimensional cathode for generating hydrogen from water. Angew Chem Int Ed 53:9577–9581CrossRefGoogle Scholar
  18. 18.
    Hou C, Chen Q, Wang C, Liang F, Lin Z, Fu W, Chen Y (2016) Self-supported cedarlike semimetallic Cu3P nanoarrays as a 3D high-performance Janus electrode for both oxygen and hydrogen evolution under basic conditions. ACS Appl Mater Interfaces 8:23037–23048CrossRefGoogle Scholar
  19. 19.
    Jin Y, Huang S, Zhang M, Jia M, Hu D (2013) A green and efficient method to produce graphene for electrochemical capacitors from graphene oxide using sodium carbonate as a reducing agent. Appl Surf Sci 268:541–546CrossRefGoogle Scholar
  20. 20.
    Zhu K, Wang Y, Tang JA, Guo S, Cao Z, Wei Y, Chen G, Gao Y (2007) A high-performance supercapacitor based on activated carbon fibers with an optimized pore structure and oxygen-containing functional groups. Mater Chem Front 1:958–966CrossRefGoogle Scholar
  21. 21.
    Li J, Xiong S, Li B, Li X, Qian Y (2009) Synthesis of CuO perpendicularly cross-bedded microstructure via a precursor-based route. Cryst Growth Des 9:4108–4115CrossRefGoogle Scholar
  22. 22.
    Yan J, Wei T, Shao B, Fan Z, Qian W, Zhang M, Wei F (2010) Preparation of a graphene nanosheet/polyaniline composite with high specific capacitance. Carbon 48:487–493CrossRefGoogle Scholar
  23. 23.
    Guo Q, Zhou X, Li X, Chen S, Seema A, Greiner A, Hou H (2009) Supercapacitors based on hybrid carbon nanofibers containing multiwalled carbon nanotubes. J Mater Chem 19:2810–2816CrossRefGoogle Scholar
  24. 24.
    Wang L, Zheng Y, Chen S, Ye Y, Xu F, Tan H, Li Z, Hou H, Song Y (2014) Three-dimensional kenaf stem-derived porous carbon/MnO2 for high-performance supercapacitors. Electrochim Acta 135:380–387CrossRefGoogle Scholar
  25. 25.
    Wang G, Huang J, Chen S, Gao Y, Cao D (2011) Preparation and supercapacitance of CuO nanosheet arrays grown on nickel foam. J Power Sources 196:5756–5760CrossRefGoogle Scholar
  26. 26.
    Gurav K, Patil U, Shin S, Agawane G, Suryawanshi M, Pawar S, Patil S, Lokhande C, Kim J (2013) Room temperature chemical synthesis of Cu(OH)2 thin films for supercapacitor application. J Alloy Compd 573:27–31CrossRefGoogle Scholar
  27. 27.
    Raj C, Kim B, Cho W, Lee W, Seo Y, Yu K (2014) Electrochemical capacitor behavior of copper sulfide (CuS) nanoplatelets. J Alloy Compd 586:191–196CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  • Yuhong Jin
    • 1
  • Chenchen Zhao
    • 1
  • Yu Wang
    • 2
  • Qianlei Jiang
    • 1
  • Changwei Ji
    • 1
    • 3
  • Mengqiu Jia
    • 2
  1. 1.Beijing Guyue New Materials Research InstituteBeijing University of TechnologyBeijingPeople’s Republic of China
  2. 2.Beijing Key Laboratory of Electrochemical Process and Technology for MaterialsBeijing University of Chemical TechnologyBeijingChina
  3. 3.College of Environmental and Energy EngineeringBeijing University of TechnologyBeijingPeople’s Republic of China

Personalised recommendations