, Volume 23, Issue 11, pp 2961–2967 | Cite as

Vertical aligned V2O5 nanoneedle arrays grown on Ti substrate as binder-free cathode for lithium-ion batteries

  • Pan-Pan Wang
  • Jing Chen
  • Cheng-Yan Xu
  • Yan-Qiu Wang
  • Liang Zhen
Original Paper


V2O5 nanoneedle arrays were grown directly on titanium (Ti) substrate by a facile solvothermal route followed with calcination at 350 °C for 2 h. The as-prepared V2O5 nanoneedles are about 50 nm in diameter and 800 nm in length. The electrochemical behavior of V2O5 nanoarrays as binder-free cathode for lithium-ion batteries (LIBs) was evaluated by cyclic voltammetry and galvanostatic discharge/charge tests. Compared with V2O5 powder electrode, V2O5 nanoneedle arrays electrode exhibited improved electrochemical performance in terms of high discharge capacity of 262.5 mA h g−1 between 2.0 and 4.0 V at 0.2 C, and high capacity retention up to 77.1% after 100 cycles. Under a high current rate of 2 C, a discharge capacity of about 175.6 mA h g−1 can be maintained. The enhanced performance are mainly due to the intimate contact between V2O5 nanoneedle active material and current collector, which enable shortened electron transfer pathway and improved charge transfer kinetics, demonstrating their potential applications in high rate electrochemical storage devices.


Binder-free electrode Lithium ion batteries Nanoneedle arrays Solvothermal synthesis V2O5 



This work was supported by the Program for New Century Excellent Talents in University, Ministry of Education, China (NCET-11-0810), China Postdoctoral Science Foundation (No. 200902381), and Fundamental Research Funds for the Central Universities (HIT.BRETIII.201203).


  1. 1.
    Goodenough JB, Park KS (2013) The li-ion rechargeable battery: a perspective. J Am Chem Soc 135:1167–1176CrossRefGoogle Scholar
  2. 2.
    Scrosati B, Garche J (2010) Lithium batteries: status, prospects and future. J Power Sources 195:2419–2430CrossRefGoogle Scholar
  3. 3.
    Yu LT, Liu J, Xu XJ, Zhang LG, Hu RZ, Liu JW, Yang LC, Zhu M (2017) Metal-organic framework-derived NiSb alloy embedded in carbon hollow spheres as superior lithium-ion battery anodes. ACS Appl Mater Interfaces 9:2516–2525CrossRefGoogle Scholar
  4. 4.
    Liu J, Yu LT, Wu C, Wen YR, Yin KB, Chiang FK, Hu RZ, Liu JW, Sun LT, Gu L, Maier J, Yu Y, Zhu M (2017) New nanoconfined galvanic replacement synthesis of hollow Sb@C yolk-shell spheres constituting a stable anode for high-rate Li/Na-ion batteries. Nano Lett 17(3):2034–2042CrossRefGoogle Scholar
  5. 5.
    Bruce PG, Scrosati B, Tarascon JM (2008) Nanomaterials for rechargeable lithium batteries. Angew Chem Int Ed 47:2930–2946CrossRefGoogle Scholar
  6. 6.
    Liu R, Duay J, Lee SB (2011) Heterogeneous nanostructured electrode materials for electrochemical energy storage. Chem Commun 47:1384–1404CrossRefGoogle Scholar
  7. 7.
    Liu J, Gu MZ, Ouyang LZ, Wang H, Yang LC, Zhu M (2016) Sandwich-like SnS/polypyrrole ultrathin nanosheets as high performance anode materials for Li-ion batteries. ACS Appl Mater Interfaces 8:8502–8510CrossRefGoogle Scholar
  8. 8.
    Mukherjee R, Krishnan R, Lu TM, Koratkar N (2012) Nanostructured electrodes for high-power lithium ion batteries. Nano Energy 1:518–533CrossRefGoogle Scholar
  9. 9.
    Liu J, Xu XJ, Hu RZ, Yang LC, Zhu M (2016) Uniform hierarchical Fe3O4@polypyrrole nanocages for superior Lithium ion battery anodes. Adv Energy Mater 6:1600256CrossRefGoogle Scholar
  10. 10.
    Sun YX, Wang J, Zhao BT, Cai R, Ran R, Shao ZP (2013) Binder-free a-MoO3 nanobelt electrode for lithium-ion batteries utilizing van der Waals forces for film formation and connection with current collector. J Mater Chem A 1:4736–4746CrossRefGoogle Scholar
  11. 11.
    Ban CM, Wu ZC, Gillaspie DT, Chen L, Yan YF, Blackburn JL, Dillon AC (2010) Nanostructured Fe3O4/SWNT electrode: binder-free and high-rate Li-ion anode. Adv Mater 22:E145–E149CrossRefGoogle Scholar
  12. 12.
    Li BJ, Cheng ZJ, Zhang NQ, Sun KN (2014) Self-supported, binder-free 3D hierarchical iron fluoride flower-like array as high power cathode material for lithium batteries. Nano Energy 4:7–13CrossRefGoogle Scholar
  13. 13.
    Zhang GQ, Wu HB, Hoster HE, Chan-Park MB, Lou XW (2012) Single-crystalline NiCo2O4 nanoneedle arrays grown on conductive substrates as binder-free electrodes for high-performance supercapacitors. Energy Environ Sci 5:9453–9456CrossRefGoogle Scholar
  14. 14.
    Zhou S, Yang XG, Lin YJ, Xie J, Wang DW (2012) A nanonet-enabled Li ion battery cathode material with high power rate, high capacity, and long cycle lifetime. ACS Nano 6(1):919–924CrossRefGoogle Scholar
  15. 15.
    Lee S, Ha J, Choi J, Song T, Lee JW, Paik U (2013) 3D cross-linked nanoweb architecture of binder-free TiO2 electrodes for lithium ion batteries. ACS Appl Mater Interfaces 5(22):11525–11529CrossRefGoogle Scholar
  16. 16.
    Li WH, Zeng LC, Yang ZZ, Gu L, Wang JQ, Liu XW, Cheng JX, Yu Y (2014) Free-standing and binder-free sodium-ion electrodes with ultralong cycle life and high rate performance based on porous carbon nanofibers. Nano 6:693–698Google Scholar
  17. 17.
    Lou FL, Zhou HT, Huang F, Vullum-Bruer F, Tran TD, Chen D (2013) Facile synthesis of manganese oxide/aligned carbon nanotubes over aluminium foil as 3D binder free cathodes for lithium ion batteries. J Mater Chem A 1:3757–3767CrossRefGoogle Scholar
  18. 18.
    Wang RH, Xu CH, Sun J, Liu YQ, Gao L, Lin CC (2013) Free-standing and binder-free lithium-ion electrodes based on robust layered assembly of graphene and Co3O4 nanosheets. Nano 5:6960–6967Google Scholar
  19. 19.
    Wang Y, Xia H, Lu L, Lin JY (2010) Excellent performance in lithium-ion battery anodes: rational synthesis of CO(CO3)0.5(OH)0.11H2O nanobelt array and its conversion into mesoporous and single-crystal Co3O4. ACS Nano 4(3):1425–1432CrossRefGoogle Scholar
  20. 20.
    Zhang L, Wu HB, Lou XW (2014) Growth of SnO2 nanosheet arrays on various conductive substrates as integrated electrodes for lithium-ion batteries. Mater Horiz 1:133–138CrossRefGoogle Scholar
  21. 21.
    Wang C, Wan W, Huang YH, Chen JT, Zhou HH, Zhang XX (2014) Hierarchical MoS2 nanosheet/active carbon fiber cloth as a binder-free and free-standing anode for lithium-ion batteries. Nano 6:5351–5358Google Scholar
  22. 22.
    Chen S, Xin YL, Zhou YY, Ma YR, Zhou HH, Qi LM (2014) Self-supported Li4Ti5O12 nanosheet arrays for lithium ion batteries with excellent rate capability and ultralong cycle life. Energy Environ Sci 7:1924–1930CrossRefGoogle Scholar
  23. 23.
    Kikkawa J, Kitta M, Kohyama M (2014) Nanometer-thick V2O5 sheets on aluminum foil for an additive-free positive electrode of lithium-ion batteries. Chem Phys Lett 592:56–58CrossRefGoogle Scholar
  24. 24.
    Wang HL, Bai Y, Chen S, Luo XY, Wu C, Wu F, Lu J, Amine K (2015) Binder-free V2O5 cathode for greener rechargeable aluminum battery. ACS Appl Mater Interfaces 7:80–84CrossRefGoogle Scholar
  25. 25.
    Wang HK, Gao XP, Feng JK, Xiong SL (2015) Nanostructured V2O5 arrays on metal substrate as binder free cathode materials for sodium-ion batteries. Electrochim Acta 182:769–774CrossRefGoogle Scholar
  26. 26.
    Takahashi K, Wang Y, Cao GZ (2005) Ni-V2O5,nH2O Core-shell nanocable arrays for enhanced electrochemical intercalation. J Phys Chem B 109:48–51CrossRefGoogle Scholar
  27. 27.
    Liang CW, Fang D, Cao YH, Li GZ, Luo ZP, Zhou QH, Xiong CX, Xu WL (2015) Polypyrrole-encapsulated vanadium pentoxide nanowires on a conductive substrate for electrode in aqueous rechargeable lithium battery. J Colloid Interface Sci 439:69–75CrossRefGoogle Scholar
  28. 28.
    Fang D, Cao YH, Liu RN, Xua WL, Liu SQ, Luo ZP, Liang CW, Liu XQ, Xiong CX (2016) Novel hierarchical three-dimensional ammonium vanadate nanowires electrodes for lithium ion battery. Appl Surf Sci 360:658–665CrossRefGoogle Scholar
  29. 29.
    Cao YH, Fang D, Wang C, Li LC, Xu WL, Luo ZP, Liu XQ, Xiong CX, Liu SQ (2015) Novel aligned sodium vanadate nanowire arrays for high-performance lithium-ion battery electrodes. RSC Adv 5:42955–42960CrossRefGoogle Scholar
  30. 30.
    Wang Y, Zhang HJ, Lim WX, Lin JY, Wong CC (2011) Designed strategy to fabricate a patterned V2O5 nanobelt array as a superior electrode for Li-ion batteries. J Mater Chem 21:2362–2368CrossRefGoogle Scholar
  31. 31.
    Pan AQ, Wu HB, Yu L, Zhu T, Lou XW (2012) Synthesis of hierarchical three-dimensional vanadium oxide microstructures as high-capacity cathode materials for Lithium-ion batteries. ACS Appl Mater Interfaces 4:3874–3879CrossRefGoogle Scholar
  32. 32.
    Niu CL, Li JB, Jin HB, Shi HL, Zhu YQ, Wang WZ, Cao MS (2015) Self-template processed hierarchical V2O5 nanobelts as cathode for high performance lithium ion battery. Electrochim Acta 182:621–628CrossRefGoogle Scholar
  33. 33.
    Liu YY, Clark M, Zhang QF, Yu DM, Liu DW, Liu J, Cao GZ (2011) V2O5 nano-electrodes with high power and energy densities for thin film Li-ion batteries. Adv Energy Mater 1:194–202CrossRefGoogle Scholar
  34. 34.
    Zeng Y, Gao GH, Wu GM, Yang HY (2015) Nanosheet-structured vanadium pentoxide thin film as a carbon- and binder-free cathode for lithium-ion battery applications. J Solid State Electrochem 19:3319–3328CrossRefGoogle Scholar
  35. 35.
    Chen Z, Augustyn V, Wen J, Zhang YW, Shen MQ, Dunn B, Lu YF (2011) High-performance supercapacitors based on intertwined CNT/V2O5 nanowire nanocomposites. Adv Mater 23:791–795CrossRefGoogle Scholar
  36. 36.
    Qian YQ, Vu A, Smyrl W, Stein A (2012) Facile preparation and electrochemical properties of V2O5-graphene composite films as free-standing cathodes for rechargeable lithium batteries. J Electrochem Soc 159(8):A1135–A1140CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  1. 1.School of Materials Science and EngineeringHarbin Institute of TechnologyHarbinChina
  2. 2.MOE Key Laboratory of Micro-Systems and Micro-Structures ManufacturingHarbin Institute of TechnologyHarbinChina
  3. 3.School of Materials Science and Chemical EngineeringHarbin Engineering UniversityHarbinChina

Personalised recommendations