Advertisement

Ionics

, Volume 23, Issue 11, pp 3203–3210 | Cite as

Facile synthesis of hollow Fe2O3 nanotubes on nitrogen-doped graphene and their electrochemical performances

  • Tao Cheng
  • Weilong Li
  • Baozhi Yu
  • Mi He
  • Linli Cao
  • Xinghua Li
  • Xinliang Zheng
  • Zhaoyu Ren
Original Paper
  • 362 Downloads

Abstract

The design and optimization of electrode materials are critically important for the development of high-performance supercapacitors. Herein, hollow Fe2O3 nanotubes supported on nitrogen-doped graphene was fabricated via a facile hydrothermal process. The morphologies of the samples were characterized by scanning electron microscopy, X-ray photoelectron spectra, X-ray diffraction, and so on. The electrochemical performance was tested with a three-electrode system in the aqueous electrolyte of 2 M KOH. The hollow Fe2O3 nanotubes/nitrogen-doped graphene composite electrode demonstrated a high specific capacitance of 270 F/g (136 F/g for hollow Fe2O3 nanotubes/graphene electrode) at a current density of 1 A/g. Besides, over 89% of the original capacitance retention was maintained after 3000 cycles, indicating a good cycle stability of hollow Fe2O3 nanotubes/nitrogen-doped graphene electrode materials. In comparison with the hollow Fe2O3 nanotubes/graphene composite, the obviously improved electrochemical performance of hollow Fe2O3 nanotubes/nitrogen-doped graphene nanocomposite was possibly due to the synergistic effect, in which hollow Fe2O3 nanotubes provided a convenient channel for the ion transport and the nitrogen-doped graphene possessed the good electronic conductivity as well as more active sites than the pure graphene.

Keywords

Hollow Fe2O3 nanotubes Nitrogen-doped graphene Supercapacitor Electrochemical performance 

Notes

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Grant Nos. 51572218, 11304249, and 61275105).

References

  1. 1.
    Li L, Wu Z, Yuan S, Zhang X-B (2014) Advances and challenges for flexible energy storage and conversion devices and systems. Energy Environ Sci 7(7):2101. doi: 10.1039/c4ee00318g CrossRefGoogle Scholar
  2. 2.
    Liu J, Zhang L, Wu HB, Lin J, Shen Z, Lou XW (2014) High-performance flexible asymmetric supercapacitors based on a new graphene foam/carbon nanotube hybrid film. Energy Environ Sci 7(11):3709–3719. doi: 10.1039/c4ee01475h CrossRefGoogle Scholar
  3. 3.
    Zhou G, Paek E, Hwang GS, Manthiram A (2015) Long-life li/polysulphide batteries with high sulphur loading enabled by lightweight three-dimensional nitrogen/sulphur-codoped graphene sponge. Nat Commun 6:7760. doi: 10.1038/ncomms8760 CrossRefGoogle Scholar
  4. 4.
    He YM, Chen WJ, Li XD, Zhang ZX, Fu JC, Zhao CH, Xie EQ (2013) Freestanding three-dimensional graphene/MnO2 composite networks as ultra light and flexible supercapacitor electrodes. ACS Nano 7(1):174–182. doi: 10.1021/nn304833s CrossRefGoogle Scholar
  5. 5.
    Yan J, Fan Z, Wei T, Qian W, Zhang M, Wei F (2010) Fast and reversible surface redox reaction of graphene–MnO2 composites as supercapacitor electrodes. Carbon 48(13):3825–3833. doi: 10.1016/j.carbon.2010.06.047 CrossRefGoogle Scholar
  6. 6.
    Jost K, Stenger D, Perez CR, McDonough JK, Lian K, Gogotsi Y, Dion G (2013) Knitted and screen printed carbon-fiber supercapacitors for applications in wearable electronics. Energy Environ Sci 6(9):2698. doi: 10.1039/c3ee40515j CrossRefGoogle Scholar
  7. 7.
    Yu D, Goh K, Wang H, Wei L, Jiang W, Zhang Q, Dai L, Chen Y (2014) Scalable synthesis of hierarchically structured carbon nanotube–graphene fibres for capacitive energy storage. Nat Nanotechnol 9(7):555–562. doi: 10.1038/nnano.2014.93 CrossRefGoogle Scholar
  8. 8.
    Wang X, Zhang Y, Zhi C, Wang X, Tang D, Xu Y, Weng Q, Jiang X, Mitome M, Golberg D, Bando Y (2013) Three-dimensional strutted graphene grown by substrate-free sugar blowing for high-power-density supercapacitors. Nat Commun 4:2905. doi: 10.1038/ncomms3905 Google Scholar
  9. 9.
    Sun H, You X, Deng J, Chen X, Yang Z, Ren J, Peng H (2014) Novel graphene/carbon nanotube composite fibers for efficient wire-shaped miniature energy devices. Adv Mater 26(18):2868–2873. doi: 10.1002/adma.201305188 CrossRefGoogle Scholar
  10. 10.
    Stoller MD, Park S, Zhu Y, An J, Ruoff RS (2008) Graphene-based ultracapacitors. Nano Lett 8(10):3498–3502. doi: 10.1021/nl802558y CrossRefGoogle Scholar
  11. 11.
    Zhi M, Xiang C, Li J, Li M, Wu N (2013) Nanostructured carbon-metal oxide composite electrodes for supercapacitors: a review. Nano 5(1):72–88. doi: 10.1039/c2nr32040a Google Scholar
  12. 12.
    Hu LB, Chen W, Xie X, Liu NA, Yang Y, Wu H, Yao Y, Pasta M, Alshareef HN, Cui Y (2011) Symmetrical MnO2-carbon nanotube-textile nanostructures for wearable Pseudocapacitors with high mass loading. ACS Nano 5(11):8904–8913. doi: 10.1021/nn203085j CrossRefGoogle Scholar
  13. 13.
    Zheng X, Yan X, Sun Y, Yu Y, Zhang G, Shen Y, Liang Q, Liao Q, Zhang Y (2016) Temperature-dependent electrochemical capacitive performance of the alpha-Fe2O3 hollow nanoshuttles as supercapacitor electrodes. J Colloid Interface Sci 466:291–296. doi: 10.1016/j.jcis.2015.12.024 CrossRefGoogle Scholar
  14. 14.
    Yu BZ, Liu XL, Zhang HG, Jing GY, Ma P, Luo YN, Xue WM, Ren ZY, Fan HM (2015) Fabrication and structural optimization of porous single-crystal alpha-Fe2O3 microrices for high-performance lithium-ion battery anodes. J Mater Chem A 3(32):16544–16550. doi: 10.1039/c5ta03670d CrossRefGoogle Scholar
  15. 15.
    Novoselov KS, Geim AK, Morozov SV, Jiang D, Katsnelson MI, Grigorieva IV, Dubonos SV, Firsov AA (2005) Two-dimensional gas of massless Dirac fermions in graphene. Nature 438(7065):197–200CrossRefGoogle Scholar
  16. 16.
    Lee KK, Deng S, Fan HM, Mhaisalkar S, Tan HR, Tok ES, Loh KP, Chin WS, Sow CH (2012) Alpha-Fe2O3 nanotubes-reduced graphene oxide composites as synergistic electrochemical capacitor materials. Nano 4(9):2958–2961. doi: 10.1039/c2nr11902a Google Scholar
  17. 17.
    Wang H, Xu Z, Yi H, Wei H, Guo Z, Wang X (2014) One-step preparation of single-crystalline Fe2O3 particles/graphene composite hydrogels as high performance anode materials for supercapacitors. Nano Energy 7:86–96. doi: 10.1016/j.nanoen.2014.04.009 CrossRefGoogle Scholar
  18. 18.
    Zhang LL, Zhao X, Ji H, Stoller MD, Lai L, Murali S, McDonnell S, Cleveger B, Wallace RM, Ruoff RS (2012) Nitrogen doping of graphene and its effect on quantum capacitance, and a new insight on the enhanced capacitance of N-doped carbon. Energy Environ Sci 5(11):9618. doi: 10.1039/c2ee23442d CrossRefGoogle Scholar
  19. 19.
    Chang Y, Li J, Wang B, Luo H, He H, Song Q, Zhi L (2013) Synthesis of 3D nitrogen-doped graphene/Fe3O4 by a metal ion induced self-assembly process for high-performance li-ion batteries. J Mater Chem A 1(46):14658. doi: 10.1039/c3ta13370b CrossRefGoogle Scholar
  20. 20.
    Bao W, Yu B, Li W, Fan H, Bai J, Ren Z (2015) Co3O4/nitrogen-doped graphene/carbon nanotubes: an innovative ternary composite with enhanced electrochemical performance. J Alloys Compd 647:873–879. doi: 10.1016/j.jallcom.2015.06.128 CrossRefGoogle Scholar
  21. 21.
    Zhao P, Li W, Wang G, Yu B, Li X, Bai J, Ren Z (2014) Facile hydrothermal fabrication of nitrogen-doped graphene/Fe2O3 composites as high performance electrode materials for supercapacitor. J Alloys Compd 604:87–93. doi: 10.1016/j.jallcom.2014.03.106 CrossRefGoogle Scholar
  22. 22.
    Li J, Ren Z, Zhou Y, Wu X, Xu X, Qi M, Li W, Bai J, Wang L (2013) Scalable synthesis of pyrrolic N-doped graphene by atmospheric pressure chemical vapor deposition and its terahertz response. Carbon 62:330–336. doi: 10.1016/j.carbon.2013.05.070 CrossRefGoogle Scholar
  23. 23.
    Yang S, Song X, Zhang P, Gao L (2013) Facile synthesis of nitrogen-doped graphene-ultrathin MnO2 sheet composites and their electrochemical performances. ACS Appl Mater Interfaces 5(8):3317–3322. doi: 10.1021/am400385g CrossRefGoogle Scholar
  24. 24.
    Ma Z, Huang X, Dou S, Wu J, Wang S (2014) One-pot synthesis of Fe2O3 nanoparticles on nitrogen-doped graphene as advanced supercapacitor electrode materials. J Phys Chem C 118(31):17231–17239CrossRefGoogle Scholar
  25. 25.
    Sharifi T, Gracia-Espino E, Barzegar HR, Jia X, Nitze F, Hu G, Nordblad P, Tai CW, Wagberg T (2013) Formation of nitrogen-doped graphene nanoscrolls by adsorption of magnetic gamma-Fe2O3 nanoparticles. Nat Commun 4:2319. doi: 10.1038/ncomms3319 CrossRefGoogle Scholar
  26. 26.
    Marcano DC, Kosynkin DV, Berlin JM, Sinitskii A, Sun Z, Slesarev A, Alemany LB, Lu W, Tour JM (2010) Improved synthesis of graphene oxide. ACS Nano 4(8):4806–4814CrossRefGoogle Scholar
  27. 27.
    Fan HM, You GJ, Li Y, Zheng Z, Tan HR, Shen ZX, Tang SH, Feng YP (2009) Shape-controlled synthesis of single-crystalline Fe2O3 hollow nanocrystals and their tunable optical properties. J Phys Chem C 113(22):9928–9935. doi: 10.1021/jp9020883 CrossRefGoogle Scholar
  28. 28.
    Li B, Dai F, Xiao Q, Yang L, Shen J, Zhang C, Cai M (2016) Nitrogen-doped activated carbon for a high energy hybrid supercapacitor. Energy Environ Sci 9(1):102–106. doi: 10.1039/c5ee03149d CrossRefGoogle Scholar
  29. 29.
    Li Z, Li X, Zong Y, Tan G, Sun Y, Lan Y, He M, Ren Z, Zheng X (2017) Solvothermal synthesis of nitrogen-doped graphene decorated by superparamagnetic Fe3O4 nanoparticles and their applications as enhanced synergistic microwave absorbers. Carbon 115:493–502. doi: 10.1016/j.carbon.2017.01.036 CrossRefGoogle Scholar
  30. 30.
    Liu J, Jiang J, Bosman M, Fan HJ (2012) Three-dimensional tubular arrays of MnO2–NiO nanoflakes with high areal pseudocapacitance. J Mater Chem 22(6):2419–2426. doi: 10.1039/c1jm14804d CrossRefGoogle Scholar
  31. 31.
    He X, Geng Y, Qiu J, Zheng M, Long S, Zhang X (2010) Effect of activation time on the properties of activated carbons prepared by microwave-assisted activation for electric double layer capacitors. Carbon 48(5):1662–1669CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  1. 1.National Photoelectric Technology, Functional Materials and Application of Science and Technology International Cooperation Center, and Institute of Photonics and Photon-TechnologyNorthwest UniversityXi’anChina
  2. 2.School of PhysicsNorthwest UniversityXi’anChina

Personalised recommendations