, Volume 23, Issue 11, pp 3057–3066 | Cite as

P2-type Na0.67Ni0.33−x Cu x Mn0.67O2 as new high-voltage cathode materials for sodium-ion batteries

  • Sen Chen
  • Enshan Han
  • Han Xu
  • Lingzhi Zhu
  • Bin Liu
  • Guangquan Zhang
  • Min Lu
Original Paper


P2-Na0.67Ni0.33−x Cu x Mn0.67O2 (x = 0, 0.02, 0.04, 0.06, 0.08) cathode materials have been synthesized via acetate decomposition method. The elementary composition and crystal structure of the powders are studied in detail using inductively coupled plasma-atomic emission spectrometry (ICP-AES) and X-ray diffraction (XRD). XRD results demonstrate that Cu2+ ions have been incorporated into the crystal structure successfully and the P2-type structure remains unchanged after substitution. According to XPS data, Cu substitution does not change the valence states of Ni and Mn, whose predominant oxidation states in Na-Ni-Mn-O structure remains +2 and +4. The introduction of Cu2+ can effectively suppress P2-O2 phase transformation when charging to 4.5 V, and significantly improve rate performance and cyclic stability compared to the undoped material. The P2-Na0.67Ni0.27Cu0.06Mn0.67O2 sample can deliver an initial discharge capacity of 211.6 mAh g−1 at 10 mAh g−1 between 1.5 and 4.5 V, and a capacity retention of 93.9% after 10 cycles. Moreover, it can also deliver a discharge capacity of 115.2 mAh g−1 at 100 mAh g−1. In addition, electrochemical impedance spectroscopy (EIS) reveals that P2-Na0.67Ni0.27Cu0.06Mn0.67O2 cathode exhibits a higher electronic conductivity and faster sodium ion diffusion velocity than that of undoped sample. These results show that P2-Na0.67Ni0.27Cu0.06Mn0.67O2 is a promising high-voltage cathode material for sodium-ion batteries.


Sodium-ion batteries Cathode material Copper-doping Electrochemical performance 


  1. 1.
    Yuan X, Xu QJ, Wang C, Liu X, Liu H, Xia Y (2015) A facile and novel organic coprecipitation strategy to prepare layered cathode material Li[Li0.2Mn0.54Ni0.13Co0.13]O2 with high capacity and excellent cycling stability. J Power Sources 279:157–164CrossRefGoogle Scholar
  2. 2.
    Xu H, Zong J, Chen S, Ding F, Lu ZW, Liu XJ (2016) Synthesis and evaluation of Na[Ni0.5Co0.2Mn0.3]O2 as a cathode material for Na-ion battery. Ceram Int 42:12521–12524CrossRefGoogle Scholar
  3. 3.
    Guo H, Wang Y, Han W, Yu Z, Qi X, Sun K, Hu YS, Liu Y, Chen D, Chen L (2015) Na-deficient O3-type cathode material Na0.8[Ni0.3Co0.2Ti0.5]O2 for room-temperature sodium-ion batteries. Electrochim Acta 158:258–263CrossRefGoogle Scholar
  4. 4.
    Wen Y, Wang B, Zeng G, Nogita K, Ye D, Wang L (2015) Electrochemical and structural study of layered P2-type Na2/3[Ni1/3Mn2/3]O2 as cathode material for sodium-ion battery. Chem Asian J 10:661–666CrossRefGoogle Scholar
  5. 5.
    Lu Z, Dahn JR (2001) In situ X-ray diffraction study of P2-Na2/3[Ni1/3Mn2/3]O2. J Electrochem Soc 148:A1225CrossRefGoogle Scholar
  6. 6.
    Wang H, Yang B, Liao XZ, Xu J, Yang D, He YS, Ma ZF (2013) Electrochemical properties of P2-Na2/3[Ni1/3Mn2/3]O2 cathode material for sodium ion batteries when cycled in different voltage ranges. Electrochim Acta 113:200–204CrossRefGoogle Scholar
  7. 7.
    Wu X, Guo J, Wang D, Zhong G, McDonald MJ, Yang Y (2015) P2-type Na0.66[Ni0.33–xZnxMn0.67]O2 as new high-voltage cathode materials for sodium-ion batteries. J Power Sources 281:18–26CrossRefGoogle Scholar
  8. 8.
    Billaud J, Singh G, Armstrong AR, Gonzalo E, Roddatis V, Armand M, Rojo T, Bruce PG (2014) Na0.67Mn1-xMgxO2 (0≦x≦0.2): a high capacity cathode for sodium-ion batteries. Energy Environ Sci 7:1387–1391CrossRefGoogle Scholar
  9. 9.
    Sharma N, Tapiaruiz N, Singh G, Armstrong AR, Pramudita JC, Brand HEA, Billaud J, Bruce PG, Rojo T (2015) Rate dependent performance related to crystal structure evolution of Na0.67Mn0.8Mg0.2O2 in a sodium-ion battery. Chem Mater 27:6976–6986CrossRefGoogle Scholar
  10. 10.
    Li ZY, Gao R, Zhang J, Zhang X, Hu Z, Liu X (2016) New insights into designing high-rate performance cathode materials for sodium ion batteries by enlarging the slab-spacing of the Na-ion diffusion layer. J Mater Chem A 4:3453–3461CrossRefGoogle Scholar
  11. 11.
    Zhang XH, Pang WL, Wan F, Guo JZ, Lü HY, Li JY, Wu XL (2016) P2-Na2/3Ni1/3Mn5/9Al1/9O2 microparticles as superior cathode material for sodium-ion batteries: enhanced properties and mechanism via graphene connection. ACS Appl Mater Interfaces 8:20650–20659CrossRefGoogle Scholar
  12. 12.
    Hasa I, Buchholz D, Passerini S, Scrosati B, Hassoun J (2014) High performance Na0.5[Ni0. 23Fe0.13Mn0.63] O2 cathode for sodium-ion batteries. Adv Energy Mater 4:140083CrossRefGoogle Scholar
  13. 13.
    Zhao W, Kirie H, Tanaka A, Unno M, Yamamoto S, Noguchi H (2014) Synthesis of metal ion substituted P2-Na2/3[Ni1/3Mn2/3]O2 cathode material with enhanced performance for Na ion batteries. Mater Lett 135:131–134CrossRefGoogle Scholar
  14. 14.
    Kubota K, Yoshida H, Yabuuchi N (2014) P2-type Na2/3[Ni1/3Mn2/3-xTix]O2 as a 3.7 V class positive electrode for Na-ion batteriesGoogle Scholar
  15. 15.
    Li Y, Yang Z, Xu S, Mu L, Gu L, Hu YS, Chen L (2015) Air-stable copper-based P2-Na7/9Cu2/9Fe1/9Mn2/3O2 as a new positive electrode material for sodium-ion batteries. Adv Sci 2:150031Google Scholar
  16. 16.
    Kang W, Zhang Z, Lee PK, Ng TW, Li W, Tang Y, Yu DYW (2015) Copper substituted P2-type Na0.67CuxMn1-xO2: a stable high-power sodium-ion battery cathode. J Mater Chem A 3:22846–22852CrossRefGoogle Scholar
  17. 17.
    Komaba S, Yoshii K, Ogata A, Nakai I (2009) Structural and electrochemical behaviors of metastable Li2/3[Ni1/3Mn2/3]O2 modified by metal element substitution. Electrochim Acta 54:2353–2359CrossRefGoogle Scholar
  18. 18.
    Lee DH, Xu J, Meng YS (2013) An advanced cathode for Na-ion batteries with high rate and excellent structural stability. Phys Chem Chem Phys 15:3304–3312Google Scholar
  19. 19.
    Pan L, Xia Y, Qiu B, Zhao H, Guo H, Jia K, Gu Q, Liu Z (2016) Structure and electrochemistry of B doped Li[Li0.2Ni0.13Co0.13Mn0.54]1-xBxO2 as cathode materials for lithium-ion batteries. J Power Sources 327:273–280CrossRefGoogle Scholar
  20. 20.
    Hu G, Zhang M, Liang L, Peng Z, Du K, Cao Y (2016) Mg–Al–B co-substitution Li[Ni0.5Co0.2Mn0.3]O2 cathode materials with improved cycling performance for lithium-ion battery under high cutoff voltage. Electrochim Acta 190:264–275CrossRefGoogle Scholar
  21. 21.
    Ruan Z, Zhu Y, Teng X (2015) Effect of pre-thermal treatment on the lithium storage performance of Li[Ni0.8Co0.15Al0.05]O2. J Mater Sci 51:1400–1408CrossRefGoogle Scholar
  22. 22.
    Zhang Y, Ye K, Cheng K, Wang G, Cao D (2014) Three-dimensional lamination-like P2-Na2/3[Ni1/3Mn2/3]O2 assembled with two-dimensional ultrathin nanosheets as the cathode material of an aqueous capacitor battery. Electrochim Acta 148:195–202CrossRefGoogle Scholar
  23. 23.
    Lee JYK, Jahng JW (2014) Highly palatable food during adolescence improves anxiety-like behaviors and hypothalamic-pituitary-adrenal axis dysfunction in rats that experienced neonatal maternal separation. Endocrinol Metab 29:169CrossRefGoogle Scholar
  24. 24.
    Liu Z, Zhou H, Ang SS, Zhang JJ (2016) Evaluation of low-cost natrochalcite Na[Cu2(OH)(H2O)(SO4)2] as an anode material for Li- and Na-ion batteries. Electrochim Acta 211:619–626CrossRefGoogle Scholar
  25. 25.
    Gopukumar S, Chung KY, Kim KB (2004) Novel synthesis of layered Li[Ni1/2Mn1/2]O2 as cathode material for lithium rechargeable cells. Electrochim Acta 49:803–810CrossRefGoogle Scholar
  26. 26.
    Jian Z, Yu H, Zhou H (2013) Designing high-capacity cathode materials for sodium-ion batteries. Electrochem Commun 34:215–218CrossRefGoogle Scholar
  27. 27.
    Han E, Jing Q, Zhu L, Zhang G, Ma S (2015) The effects of sodium additive on Li1.17[Ni0.10Co0.10Mn0.63]O2 for lithium ion batteries. J Alloys Compd 618:629–634CrossRefGoogle Scholar
  28. 28.
    Wang Y, Xiao R, Hu YS, Avdeev M, Chen L (2015) P2-Na0.6[Cr0.6Ti0.4]O2 cation-disordered electrode for high-rate symmetric rechargeable sodium-ion batteries. Nat Commun 6:6954CrossRefGoogle Scholar
  29. 29.
    Buchholz D, Chagas LG, Winter M, Passerini S (2013) P2-type layered Na0.45[Ni0.22Co0.11Mn0.66]O2 as intercalation host material for lithium and sodium batteries. Electrochim Acta 110:208–213CrossRefGoogle Scholar
  30. 30.
    Komaba S, Yabuuchi NNT, Ogata A, Ishikawa T, Nakai I (2012) Study on the reversible electrode reaction of Na1-x[Ni0.5Mn0.5]O2 for a rechargeable sodium-ion battery. Inorg Chem 51:6211–6220CrossRefGoogle Scholar
  31. 31.
    Clément RJ, Bruce PG, Grey CP (2015) Review—manganese-based P2-type transition metal oxides as sodium-ion battery cathode materials. J Electrochem Soc 162:A2589–A2604CrossRefGoogle Scholar
  32. 32.
    Shi SJ, Tu JP, Tang YY, Yu YX, Zhang YQ, Wang XL, Gu CD (2013) Combustion synthesis and electrochemical performance of Li[Li0.2Mn0.54Ni0.13Co0.13]O2 with improved rate capability. J Power Sources 228:14–23CrossRefGoogle Scholar
  33. 33.
    Shanmugam R, Lai W (2014) Study of transport properties and interfacial kinetics of Na2/3[Ni1/3MnxTi2/3-x]O2 (x=0,1/3) as electrodes for Na-ion batteries. J Electrochem Soc 162:A8–A14CrossRefGoogle Scholar
  34. 34.
    Molenda J, Ojczyk W, Marzec J (2007) Electrical conductivity and reaction with lithium of LiFe 1−y MnyPO4 olivine-type cathode materials. J Power Sources 174:689–694CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  1. 1.School of Chemical Engineering and TechnologyHebei University of TechnologyTianjinPeople’s Republic of China
  2. 2.National Key Lab of Power Sources, Tianjin Institute of Power SourcesTianjinChina

Personalised recommendations