, Volume 23, Issue 11, pp 3163–3168 | Cite as

An electron transfer in CuCl-CuCl2 melt at different Cl2 partial pressures

  • P. Yu. Shevelin
  • A. A. Raskovalov
  • N. G. Molchanova
Original Paper


Electron and ion transference numbers, conductivity, and Cu+/Cu2+ concentration ratio in the CuCl-CuCl2 melt are measured at temperature of 560 °C and partial pressure of chlorine from 0.1 to 1 atm. The electron transference numbers and the total conductivity grow with chlorine partial pressure; that is accompanied by decreasing of ionic conductivity both in contribution and absolute values. The total conductivity changes from ∼6 to ∼8 S cm−1 while pCl2 increases from 0.1 to 1 atm. The electron transference numbers increase from 67 to 95% in the same chlorine partial pressure range. The electronic conductivity is evaluated by two independent methods. Values of electronic conductivity obtained from the concentrations of Cu2+ ions are close to that obtained by Faraday efficiency measurements.


Ionic-electronic melt Electronic conductivity Transference numbers Copper chlorides Electron transfer 



The reported study was funded by RFBR, according to the research project no. 16-33-60095 mol_а_dk.

The research has been carried out with the equipment of the Shared Access Center “Composition of Compounds” of the Institute of High Temperature Electrochemistry.


  1. 1.
    Bredig MA (1964) Mixtures of metals with molten salts. In: Blander M (ed) Molten salt chemistry. Interscience Publishers, New York, pp 367–425Google Scholar
  2. 2.
    Danek KV (1985) “Electronic Conductivity in Ionic Melts” in Proceedings of International Symposium on Systems with the Fast Ionic Transport, Bratislava, pp 109–114Google Scholar
  3. 3.
    Budimirov MA, Redkin AA, Khokhlov VA, Batalov NN (1993) Physicochemical investigation of molten (LiCl-KCl)eut-CuCl-CuCl2 mixtures. Rasplavy 3:47–53Google Scholar
  4. 4.
    Shevelin PY, Molchanova NG, Yolshin AN, Batalov NN (2003) Electron transfer in an electron-ion molten mixture of CuCl-CuCl2-MeCl (Me = Li, Na, K, Cs). Electrochim Acta 48:1385–1394CrossRefGoogle Scholar
  5. 5.
    Schmidt E (1963) Polarographie in salzschmelzen—II. Oscillographische wechselstrompolarographie in kaliumchlorid-lithiumchlorid-eutektikum. Electrochim Acta 8:23–35CrossRefGoogle Scholar
  6. 6.
    Poignet JC, Barbier MJ (1972) Determination des coeffocients et des entalpies diactivation de diffusion de quelquis cations daus l’eutectique LiCl-KCl fondu par chronopotentiometrie. Electrochim Acta 17:1227–1233CrossRefGoogle Scholar
  7. 7.
    Kuznetsov SA (1991) Electrochemical behavior of copper in chloride and chloride–fluoride melts. Elektrokhimiya 27:1526–1533Google Scholar
  8. 8.
    Stenberg S, Petrescu V, Visan T, Cotarta A (1983) Electrochemical Reaction of Cu2+ and Cu+ in the LiCl–KCl Eutectic. I. Revue Roumaine de Chimi 28:565–573Google Scholar
  9. 9.
    Laitinen HA, Ferguson WS (1957) Chronopotentiometric analysis in fused lithium chloride-potassium chloride. Anal Chem 29:4–9CrossRefGoogle Scholar
  10. 10.
    Castrillejo Y, Abejon C, Vega M, Pardo R (1997) Chemical and electrochemical behaviour of copper ions in the ZnCl2-2NaCl mixture at 450 °C. Electrochim Acta 42:1495–1506CrossRefGoogle Scholar
  11. 11.
    Yolshin AN, Budimirov MA, Zakharov VV, Batalov NN (1989) Diffusion coefficients of Ni2+ in low-melting alkali-halide mixtures. Rasplavy 3:120–123Google Scholar
  12. 12.
    Timchenko AP, Shvab NA (1978) Equilibrium potentials of copper in an LiCl-KCl melt. Ukr Khim Zh 44(9):989–991Google Scholar
  13. 13.
    Timchenko AP, Shvab NA (1976) Interaction of copper(I) chloride with chlorine in chloride melts. Ukr Khim Zh 44(9):923–925Google Scholar
  14. 14.
    Timchenko AP (1983) Temperature dependence of the dissociation of molten salt mixtures based on copper(II) chloride. Ukr Khim Zh 49(9):14–16Google Scholar
  15. 15.
    Proskurnev IS, Shevelin PY, Molchanova NG, Batalov NN (2012) Electrode processes at the glass carbon/LiCl-CuCl-CuCl2 melt interface. Russ Metallurgy (Metally) 2012:119–127CrossRefGoogle Scholar
  16. 16.
    Alimpiev PA, Belyaeva NA, Shevelin PY, Molchanova NG, Batalov NN (2011) Rasplavy 5:54–64Google Scholar
  17. 17.
    Yolshin AN, Shevelin PY, Batalov NN, Molchanova NG (1995) An electron-conducting CuCl-CuCl2 ionic melt as a prospective cathodic material for thermal secondary batteries in: The 19th International Power Sources Symposium, Brighton, UK, pp 431–441Google Scholar
  18. 18.
    Furman AA, Rabovskii BG (1970) Fundamentals of chemistry and technology of anhydrous chlorides. Khimiya, MoscowGoogle Scholar
  19. 19.
    Janz GJ (1967) Molten Salts Handbook. Academic Press, New YorkGoogle Scholar
  20. 20.
    Van-Artsdalen ER, Yaffe IS (1955) Electrical conductance and density of molten salt systems: KCl–LiCl, KCl–NaCl and KCl–KI. J Phys Chem 59:118–127CrossRefGoogle Scholar
  21. 21.
    Elshin AN, Shevelin PY, Molchanova NG, Batalov NN, Red’kin AA (1997) Electron transfer in the CuCl-CuCl2-LiCl melt. Russ J Electrochem 33:1299–1305Google Scholar
  22. 22.
    Freyland W (2011) Liquid metals, molten salts, and ionic liquids: some basic properties. In: Cardona M (ed) Coulombic fluids. bulk and interfaces. Springer-Verlag, Berlin, pp 5–40CrossRefGoogle Scholar
  23. 23.
    Elshin AN, Budimirov MA, Zakharov VV, Batalov NN (1989) Diffusion coefficients of Cu2+ and Cu+ in low-melting-point mixtures of alkali metal halides. Rasplavy 3:120–123Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  • P. Yu. Shevelin
    • 1
  • A. A. Raskovalov
    • 1
  • N. G. Molchanova
    • 1
  1. 1.The Institute of High-Temperature Electrochemistry of the Ural Branch of RASYekaterinburgRussia

Personalised recommendations