Skip to main content
Log in

The order of addition of corn starch/lithium perchlorate/glycerol affects the optical, mechanical, and electrical properties of a solid polymer electrolyte

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

Optical, mechanical, and electric properties of solid polymer electrolyte (SPE) were affected by the order of addition of corn starch (S), lithium perchlorate (Li), and glycerol (G) during the preparation process. Four formulations were made based on whether Li was added prior to S gelatinization (simultaneous formulations SGLi and SLi+G) or whether it was added after S was gelatinized (sequential formulations SG+Li and S+LiG). Simultaneous formulations produced films with smaller elongation-at-break response (60–75%) relative to their sequential counterparts (75–82%). The simultaneous formulations exhibited higher electrical conductivity (∼0.7 mS cm−1) and capacitance (∼0.017 F cm−2) and electrochemical stability than the sequential formulations (∼0.9 mS cm−1 and ∼0.012 F cm−2) at room temperature. Results from FTIR and DSC analyses indicated that starch re-crystallization in casting phase could lead to variations on electrical properties for the different SPE formulations. It was postulated that Li cations replace hydrogen ions inside starch molecules, retarding the re-crystallization of starch molecules.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Croce F, Appetecchi GB, Persi L, Scrosati B (1998) Nanocomposite polymer electrolytes for lithium batteries. Nature 394:456–458

    Article  CAS  Google Scholar 

  2. Wu JH, Lan Z, Lin JM, Huang ML, Hao SC, Sato T, Yin S (2007) A novel thermosetting gel electrolyte for stable quasi-solid-state dye-sensitized solar cells. Adv Mater 19:4006–4011

    Article  CAS  Google Scholar 

  3. Meng C, Liu C, Chen L, Hu C, Fan S (2010) Highly flexible and all-solid-state paperlike polymer supercapacitors. Nano Lett 10(10):4025–4031

    Article  CAS  Google Scholar 

  4. Khiar AA, Arof AK (2010) Conductivity studies of starch-based polymer electrolytes. Ionics 16:123–129

    Article  CAS  Google Scholar 

  5. Khiar ASA, Puteh R, Arof AK (2006) Conductivity studies of a chitosan-based polymer electrolyte. Physica B 373:23–27

    Article  CAS  Google Scholar 

  6. Yamazaki A, Takegawa R, Kaneko Y, Kadokawa JI, Yamagata M, Ishikawa M (2009) An acidic cellulose–chitin hybrid gel as novel electrolyte for an electric double layer capacitor. Electrochem Commun 11:68–70

    Article  CAS  Google Scholar 

  7. Park SJ, Yoo K, Kim JY, Kim JY, Lee DK, Kim B, Ko MJ (2013) Water-based thixotropic polymer gel electrolyte for dye-sensitized solar cells. ACS Nano 7:4050–4056

    Article  CAS  Google Scholar 

  8. Vieira DF, Avellaneda CO, Pawlicka A (2007) Conductivity study of a gelatin-based polymer electrolyte. Electrochim Acta 53:1404–1408

    Article  CAS  Google Scholar 

  9. Zobel HF (1988) Molecules to granules: a comprehensive starch review. Starch-Stärke 40:44–50

    Article  CAS  Google Scholar 

  10. Marcondes RF, D’Agostini PS, Ferreira J, Girotto EM, Pawlicka A, Dragunski DC (2010) Amylopectin-rich starch plasticized with glycerol for polymer electrolyte application. Solid State Ionics 181:586–591

    Article  CAS  Google Scholar 

  11. Sudhakar YN, Selvakumar M (2012) Lithium perchlorate doped plasticized chitosan and starch blend as biodegradable polymer electrolyte for supercapacitors. Electrochim Acta 78:398–405

    Article  CAS  Google Scholar 

  12. Sudhakar YN, Selvakumar M (2013) LiClO4-doped plasticized chitosan and poly (ethylene glycol) blend as biodegradable polymer electrolyte for supercapacitors. Ionics 19:277–285

    Article  CAS  Google Scholar 

  13. Kumar M, Tiwari T, Srivastava N (2012) Electrical transport behaviour of bio-polymer electrolyte system: potato starch+ammonium iodide. Carbohydr Polym 88:54–60

    Article  CAS  Google Scholar 

  14. Lin Y, Li J, Liu K, Liu Y, Liu J, Wang X (2016) Unique starch polymer electrolyte for high capacity all-solid-state lithium sulfur battery. Green Chem 18:3796–3803

    Article  CAS  Google Scholar 

  15. Biliaderis CG, Maurice TJ, Vose JR (1980) Starch gelatinization phenomena studied by differential scanning calorimetry. J Food Sci 45(6):1669–1674

    Article  Google Scholar 

  16. Ratnayake WS, Jackson DS (2007) A new insight into the gelatinization process of native starches. Carbohydr Polym 67:511–529

    Article  CAS  Google Scholar 

  17. Ning W, Xingxiang Z, Haihui L, Benqiao H (2009) 1-Allyl-3-methylimidazolium chloride plasticized-corn starch as solid biopolymer electrolytes. Carbohydr Polym 76:482–484

    Article  Google Scholar 

  18. Ramesh S, Liew CW, Arof AK (2011) Ion conducting corn starch biopolymer electrolytes doped with ionic liquid 1-butyl-3-methylimidazolium hexafluorophosphate. J Non-Cryst Solids 357(21):3654–3660

    Article  CAS  Google Scholar 

  19. Khanmirzaei MH, Ramesh S (2014) Nanocomposite polymer electrolyte based on rice starch/ionic liquid/TiO2 nanoparticles for solar cell application. Measurement 58:68–72

    Article  Google Scholar 

  20. Wang S, Li C, Copeland L, Niu Q, Wang S (2015) Starch retrogradation: a comprehensive review. Compr Rev Food Sci Food Saf 14:568–585

    Article  CAS  Google Scholar 

  21. Li G, Li Z, Zhang P, Zhang H, Wu Y (2008) Research on a gel polymer electrolyte for Li-ion batteries. Pure Appl Chem 80:2553–2563

    CAS  Google Scholar 

  22. ASTM D1003-00 (2000) Standard test method for haze and luminous transmittance of transparent plastics. ASTM International, West Conshohocken

    Google Scholar 

  23. ASTM D882-00 (2000) Standard test method for tensile properties of thin plastic sheeting. ASTM International, West Conshohocken

    Google Scholar 

  24. Hermans PH, Weidinger A (1949) X-ray studies on the crystallinity of cellulose. J Polym Sci 4:135–144

    Article  CAS  Google Scholar 

  25. Ahvenainen P, Kontro I, Svedström K (2016) Comparison of sample crystallinity determination methods by X-ray diffraction for challenging cellulose I materials. Cellulose 23:1073–1086

    Article  CAS  Google Scholar 

  26. Roldan-Cruz C, Garcia-Hernandez A, Vernon-Carter EJ, Alvarez-Ramirez J (2017) Impact of insoluble starch remnants on the behavior of corn starch/glycerol/LiCl solid electrolyte. Ionics. doi:10.1007/s11581-017-2014-0

    Google Scholar 

  27. Romero-Bastida CA, Bello-Perez LA, Velazquez G, Alvarez-Ramirez J (2015) Effect of the addition order and amylose content on mechanical, barrier and structural properties of films made with starch and montmorillonite. Carbohydr Polym 127:195–201

    Article  CAS  Google Scholar 

  28. Oosten BJ (1982) Tentative hypothesis to explain how electrolytes affect the gelatinization temperature of starches in water. Starch-Stärke 34:233–239

    Article  CAS  Google Scholar 

  29. Lobato-Calleros C, Hernandez-Jaimes C, Chavez-Esquivel G, Meraz M, Sosa E, Lara VH, Alvarez-Ramirez J, Vernon-Carter EJ (2015) Effect of lime concentration on gelatinized maize starch dispersions properties. Food Chem 172:353–360

    Article  CAS  Google Scholar 

  30. Xian-Zhong H, Hamaker BR (2002) Association of starch granule proteins with starch ghosts and remnants revealed by confocal laser scanning microscopy. Cereal Chem 79:892–896

    Article  Google Scholar 

  31. Debet MR, Gidley MJ (2007) Why do gelatinized starch granules not dissolve completely? Roles for amylose, protein, and lipid in granule “ghost” integrity. J Agric Food Chem 55:4752–4760

    Article  CAS  Google Scholar 

  32. Ma X, Yu J, He K, Wang N (2007) The effects of different plasticizers on the properties of thermoplastic starch as solid polymer electrolytes. Macromol Mat Eng 292:503–510

    Article  CAS  Google Scholar 

  33. Liew CW, Ramesh S, Ramesh K, Arof AK (2012) Preparation and characterization of lithium ion conducting ionic liquid-based biodegradable corn starch polymer electrolytes. J Solid State Electrochem 16:1869–1875

    Article  CAS  Google Scholar 

  34. Utrilla-Coello RG, Hernández-Jaimes C, Carrillo-Navas H, González F, Rodríguez E, Bello-Perez LA, Alvarez-Ramirez J (2014) Acid hydrolysis of native corn starch: morphology, crystallinity, rheological and thermal properties. Carbohydr Polym 103:596–602

    Article  CAS  Google Scholar 

  35. Karim AA, Norziah MH, Seow CC (2000) Methods for the study of starch retrogradation. Food Chem 71:9–36

    Article  CAS  Google Scholar 

  36. Sevenou O, Hill SE, Farhat IA, Mitchell JR (2002) Organisation of the external region of the starch granule as determined by infrared spectroscopy. Int J Biol Macromol 31(1):79–85

    Article  CAS  Google Scholar 

  37. van Soest JJ, Tournois H, de Wit D, Vliegenthart JF (1995) Short-range structure in (partially) crystalline potato starch determined with attenuated total reflectance Fourier-transform IR spectroscopy. Carbohydr Res 279:201–214

    Article  Google Scholar 

  38. Beck M, Jekle M, Becker T (2011) Starch re-crystallization kinetics as a function of various cations. Starch-Stärke 63:792–800

    Article  CAS  Google Scholar 

  39. Al-Muhtaseb AH, McMinn WAM, Magee TRA (2004) Water sorption isotherms of starch powders. Part 2: thermodynamic characteristics. J Food Eng 62:135–142

    Article  Google Scholar 

  40. Liu H, Chaudhary D, Yusa S, Tadé MO (2011) Glycerol/starch/Na+-montmorillonite nanocomposites: a XRD, FTIR, DSC and 1H NMR study. Carbohydr Polym 83:1591–1597

    Article  CAS  Google Scholar 

  41. Talja RA, Helén H, Roos YH, Jouppila K (2007) Effect of various polyols and polyol contents on physical and mechanical properties of potato starch-based films. Carbohydr Polym 67:288–295

    Article  CAS  Google Scholar 

  42. Huang X, Kocaefe D, Kocaefe Y, Boluk Y, Pichette A (2012) Study of the degradation behavior of heat-treated jack pine (Pinus banksiana) under artificial sunlight irradiation. Polym Degrad Stab 97:1197–1214

    Article  CAS  Google Scholar 

  43. Samsudin AS, Khairul WM, Isa MIN (2012) Characterization on the potential of carboxy methylcellulose for application as proton conducting biopolymer electrolytes. J Non-Cryst Solids 358:1104–1112

    Article  CAS  Google Scholar 

  44. Shukur MF, Kadir MFZ (2015) Hydrogen ion conducting starch-chitosan blend based electrolyte for application in electrochemical devices. Electrochim Acta 158:152–165

    Article  CAS  Google Scholar 

  45. Selvakumar M, Bhat DK (2008) LiClO4 doped cellulose acetate as biodegradable polymer electrolyte for supercapacitors. J Appl Polym Sci 110:594–602

    Article  CAS  Google Scholar 

  46. Stephan AM, Thirunakaran RN, Renganathan G, Sundaram V, Pitchumani S, Muniyandi N, Ramamoorthy P (1999) A study on polymer blend electrolyte based on PVC/PMMA with lithium salt. J Power Sources 81:752–758

    Article  Google Scholar 

  47. Jaipal Reddy M, Sreekanth T, Subba Rao UV (1999) Study of the plasticizer effect on a (PEO+NaYF4) polymer electrolyte and its use in an electrochemical cell. Solid State Ionics 126:55–63

    Article  Google Scholar 

  48. Teoh KH, Lim CS, Ramesh S (2014) Lithium ion conduction in corn starch based solid polymer electrolytes. Measurement 48:87–95

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank the Consejo Nacional de Ciencia y Tecnología (CONACyT) for partially financing this work through project 236500.

Author information

Authors and Affiliations

Authors

Contributions

E. J. Vernon-Carter proposed the use of contact angle and EIS for monitoring film stability. J. Alvarez-Ramirez organized results and discussion. L.A. Bello-Perez helped with the characterization of starch-based films. C. Roldan-Cruz (Ph.D. student) designed and performed the EIS experiments. A. Garcia-Hernandez (Ph.D. student) carried out conductivity, opacity, and mechanical response tests. L. Huerta carried out and interpreted XPS studies. All authors contributed to the writing of the manuscript.

Corresponding author

Correspondence to J. Alvarez-Ramirez.

Ethics declarations

Conflict of interest

The authors declare no competing financial interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vernon-Carter, E., Alvarez-Ramirez, J., Bello-Perez, L. et al. The order of addition of corn starch/lithium perchlorate/glycerol affects the optical, mechanical, and electrical properties of a solid polymer electrolyte. Ionics 23, 3111–3123 (2017). https://doi.org/10.1007/s11581-017-2119-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-017-2119-5

Keywords

Navigation