Advertisement

Ionics

, Volume 23, Issue 11, pp 3177–3185 | Cite as

Synthesis of nanosheet-constructed SnO2 spheres with efficient photocatalytic activity and high lithium storage capacity

  • Xiaolei Sun
  • Li Qiao
  • Li Qiao
  • Hua Pang
  • Dan Li
Original Paper

Abstract

Advanced SnO2 nanostructured materials are of great interest for photocatalytic organic pollutants degradation and electrochemical energy storage and conversion. However, they still exhibit unsatisfactory performance because of their limited active sites. To create more efficient architectures, bifunctional hierarchical SnO2 spheres constructed by extremely thin nanosheet subunits were synthesized through a facile hydrothermal process in ethanol/water medium with subsequent calcination treatment. These SnO2 nanosheets in the spheres are less than 10 nm thick and consist of amorphous matrices and nanoscaled particles, which show preferential exposure of (001) facets. The photocatalytic and lithium storage properties of the hierarchical SnO2 spheres were investigated. Compared with that of the commercial SnO2 powders, the nanosheet-constructed SnO2 spheres possess more efficient photocatalytic activity for degradation of Rhodamine B and much higher reversible capacity of 765 mAh g−1 even up to 50th cycle and superior stability for lithium storage, which endows them with great potential applications in photocatalysis and lithium-ion anodes.

Keywords

SnO2 Structural materials Nanostructures Photocatalysis Lithium-ion batteries 

Notes

Acknowledgments

The authors thank Mr. Chuansheng Ma, Xi’an Jiaotong University, for assistance in TEM measurements. The project was in part supported by the Chunhui Program of Ministry of Education of China (Grant No. Z2014015).

References

  1. 1.
    Reddy MV, Subba Rao GV, Chowdari BVR (2013) Metal oxides and oxysalts as anode materials for li ion batteries. Chem Rev 113:5364–5457CrossRefGoogle Scholar
  2. 2.
    Hong WT, Risch M, Stoerzinger KA, Grimaud A, Suntivich J, Shao-Horn Y (2015) Toward the rational design of non-precious transition metal oxides for oxygen electrocatalysis. Energy Environ Sci 8:1404–1427CrossRefGoogle Scholar
  3. 3.
    Zhao Y, Li X, Yan B, Xiong D, Li D, Lawes S, Sun X (2016) Recent developments and understanding of novel mixed transition-metal oxides as anodes in lithium ion batteries. Adv Energy Mater 6:1502175CrossRefGoogle Scholar
  4. 4.
    Wang X, Qiao L, Sun X, Li X, Hu D, Zhang Q, He D (2013) Mesoporous NiO nanosheet networks as high performance anode for li ion batteries. J Mater Chem A 1:4173–4176CrossRefGoogle Scholar
  5. 5.
    Du Y, Gao L, Li C-R, Ji A-L (2013) Thermal stability and electrical properties of copper nitride with in or Ti. Chinese Phys B 22:066804CrossRefGoogle Scholar
  6. 6.
    Liu S, Wu J, Zhou J, Fang G, Liang S (2015) Mesoporous NiCo2O4 nanoneedles grown on three dimensional graphene networks as binder-free electrode for high-performance lithium-ion batteries and supercapacitors. Electrochim Acta 176:1–9CrossRefGoogle Scholar
  7. 7.
    Sun X, Yan C, Chen Y, Si W, Deng J, Oswald S, Liu L, Schmidt OG (2014) Three-dimensionally “curved” NiO nanomembranes as ultrahigh rate capability anodes for li-ion batteries with long cycle lifetimes. Adv Energy Mater 4:1300912CrossRefGoogle Scholar
  8. 8.
    Du Y, Lu NP, Yang H, Ye MP, Li CR (2013) Electrical, optical properties and structure characterization of in-doped copper nitride thin film. Acta Phys Sin 62:118104Google Scholar
  9. 9.
    Chai H, Dong H, Wang Y, Xu J, Jia D (2017) Porous NiCo2S4-halloysite hybrid self-assembled from nanosheets for high-performance asymmetric supercapacitor applications. Appl Surf Sci 401:399–407CrossRefGoogle Scholar
  10. 10.
    Lu X, Zhang L, Sun X, Si W, Yan C, Schmidt OG (2016) Bifunctional au-Pd decorated MnOx nanomembranes as cathode materials for li-O2 batteries. J Mater Chem A 4:4155–4160CrossRefGoogle Scholar
  11. 11.
    Lu X, Si W, Sun X, Liu B, Zhang L, Yan C, Schmidt OG (2016) Pd-functionalized MnOx-GeOy nanomembranes as highly efficient cathode materials for li-O2 batteries. Nano Energy 19:428–436CrossRefGoogle Scholar
  12. 12.
    Li D, Li X, Hou X, Sun X, Liu B, He D (2014) Building a Ni3S2 nanotube array and investigating its application as an electrode for lithium ion batteries. Chem Commun 50:9361–9364CrossRefGoogle Scholar
  13. 13.
    Zhu W, Yang Y, Ma D, Wang H, Zhang Y, Hu H (2015) Controlled growth of flower-like SnS2 hierarchical structures with superior performance for lithium-ion battery applications. Ionics 21:19–26CrossRefGoogle Scholar
  14. 14.
    Zhao Y, Song Z, Li X, Sun Q, Cheng N, Lawes S, Sun X (2016) Metal organic frameworks for energy storage and conversion. Energy Storage Mater 2:35–62CrossRefGoogle Scholar
  15. 15.
    Wang H, Liang Q, Wang W, An Y, Li J, Guo L (2011) Preparation of flower-like SnO2 nanostructures and their applications in gas-sensing and lithium storage. Cryst Growth Des 11:2942–2947CrossRefGoogle Scholar
  16. 16.
    Chen L, Xie L, Wang M, Ge X (2015) Preparation of three-dimensional inverse opal SnO2/graphene composite microspheres and their enhanced photocatalytic activities. J Mater Chem A 3:2991–2998CrossRefGoogle Scholar
  17. 17.
    Feng N, Qiao L, Hu D, Sun X, Wang P, He D (2013) Synthesis, characterization, and lithium-storage of ZnO-SnO2 hierarchical architectures. RSC Adv 3:7758–7764CrossRefGoogle Scholar
  18. 18.
    Deng YF, Fang CC, Chen GH (2016) The developments of SnO2/graphene nanocomposites as anode materials for high performance lithium ion batteries: a review. J Power Sources 304:81–101CrossRefGoogle Scholar
  19. 19.
    Liu Y, Jiao Y, Zhang Z, Qu F, Umar A, Wu X (2014) Hierarchical SnO2 nanostructures made of intermingled ultrathin nanosheets for environmental remediation, smart gas sensor, and supercapacitor applications. ACS Appl Mater Interfaces 6:2174–2184CrossRefGoogle Scholar
  20. 20.
    Sun X, Wang X, Qin Y, Li X, Qiao L, Feng N, Hu D, He D (2012) Synthesis of novel pompon-like porous SnO2 and its application in lithium-ion battery. Mater Lett 66:193–195CrossRefGoogle Scholar
  21. 21.
    Tan C, Zhao S, Yang G, Hu S, Qin X (2015) Facile and surfactant-free synthesis of SnO2-graphene hybrids as high performance anode for lithium-ion batteries. Ionics 21:987–994CrossRefGoogle Scholar
  22. 22.
    Wang H, Rogach AL (2014) Hierarchical SnO2 nanostructures: recent advances in design, synthesis, and applications. Chem Mater 26:123–133CrossRefGoogle Scholar
  23. 23.
    Wang SR, Yang JD, Zhang HX, Wang YS, Gao XL, Wang LW, Zhu ZY (2015) One-pot synthesis of 3D hierarchical SnO2 nanostructures and their application for gas sensor. Sensors Actuators B Chem 207:83–89CrossRefGoogle Scholar
  24. 24.
    Yang R, Gu YG, Li YQ, Zheng J, Li XG (2010) Self-assembled 3-D flower-shaped SnO2 nanostructures with improved electrochemical performance for lithium storage. Acta Mater 58:866–874CrossRefGoogle Scholar
  25. 25.
    Chen JS, Archer LA, Lou XW (2011) SnO2 hollow structures and TiO2 nanosheets for lithium-ion batteries. J Mater Chem 21:9912–9924CrossRefGoogle Scholar
  26. 26.
    Han Y, Wu X, Ma Y, Gong L, Qu F, Fan H (2011) Porous SnO2 nanowire bundles for photocatalyst and li ion battery applications. CrystEngComm 13:3506–3510CrossRefGoogle Scholar
  27. 27.
    Sun X, Wang X, Qiao L, Hu D, Feng N, Li X, Liu Y, He D (2012) Electrochemical behaviors of porous SnO2-Sn/C composites derived from pyrolysis of SnO2/poly (vinylidene fluoride). Electrochim Acta 66:204–209CrossRefGoogle Scholar
  28. 28.
    Zhao Y, Li X, Yan B, Li D, Lawes S, Sun X (2015) Significant impact of 2D graphene nanosheets on large volume change tin-based anodes in lithium-ion batteries: a review. J Power Sources 274:869–884CrossRefGoogle Scholar
  29. 29.
    Li J, Guo J, Zhang X, Peng R (2016) Tin oxide nano-flower-anchored graphene composites as high-performance anode materials for lithium-ion batteries. Ionics 22:2307–2313CrossRefGoogle Scholar
  30. 30.
    Jiang L-Y, Wu X-L, Guo Y-G, Wan L-J (2009) SnO2-based hierarchical nanomicrostructures: facile synthesis and their applications in gas sensors and lithium-ion batteries. J Phys Chem C 113:14213–14219CrossRefGoogle Scholar
  31. 31.
    Zhao Y, Goncharova LV, Lushington A, Sun Q, Yadegari H, Wang B, Xiao W, Li R, Sun X (2017) Superior stable and long life sodium metal anodes achieved by atomic layer deposition. Adv Mater. doi: 10.1002/adma.201606663 Google Scholar
  32. 32.
    Yin X, Chen L, Li C, Hao Q, Liu S, Li Q, Zhang E, Wang T (2011) Synthesis of mesoporous SnO2 spheres via self-assembly and superior lithium storage properties. Electrochim Acta 56:2358–2363CrossRefGoogle Scholar
  33. 33.
    Din NU, Rahman G (2014) Spin-polarized surface state in li-doped SnO2(001). RSC Adv 4:29884–29889CrossRefGoogle Scholar
  34. 34.
    Huang S, Zhang L, Lu X, Liu L, Liu L, Sun X, Yin Y, Oswald S, Zou Z, Ding F, Schmidt OG (2017) Tunable pseudocapacitance in 3D TiO2-δ nanomembranes enabling superior lithium storage performance. ACS Nano 11:821–830CrossRefGoogle Scholar
  35. 35.
    Peng X, Zhang X, Wang L, Hu L, Cheng SH-S, Huang C, Gao B, Ma F, Huo K, Chu PK (2016) Hydrogenated V2O5 nanosheets for superior lithium storage properties. Adv Funct Mater 26:784–791CrossRefGoogle Scholar
  36. 36.
    Quan B, Liu W, Liu Y, Zheng Y, Yang G, Ji G (2016) Quasi-noble-metal graphene quantum dots deposited stannic oxide with oxygen vacancies: synthesis and enhanced photocatalytic properties. J Colloid Interface Sci 481:13–19CrossRefGoogle Scholar
  37. 37.
    Mishra KC, Johnson KH, Schmidt PC (1995) Electronic structure of antimony-doped tin oxide. Phys Rev B 51:13972CrossRefGoogle Scholar
  38. 38.
    Tauc J, Menth A (1972) States in the gap. J Non-Cryst Solids 8-10:569–585CrossRefGoogle Scholar
  39. 39.
    Zhou G, Ni S, Sun X, Wang X, Wang Q, He D (2011) Visible photoluminescence of hydrothermal synthesized Sn1-xNixO2 nanostructures. J Mater Sci Mater Electron 22:174–178CrossRefGoogle Scholar
  40. 40.
    Wu S, Cao H, Yin S, Liu X, Zhang X (2009) Amino acid-assisted hydrothermal synthesis and Photocatalysis of SnO2 Nanocrystals. J Phys Chem C 113:17893–17898CrossRefGoogle Scholar
  41. 41.
    Ansari SA, Khan MM, Omaish Ansari M, Lee J, Cho MH (2014) Highly photoactive SnO2 nanostructures engineered by electrochemically active biofilm. New J Chem 38:2462–2469CrossRefGoogle Scholar
  42. 42.
    Hassan AS, Moyer K, Ramachandran BR, Wick CD (2016) Comparison of storage mechanisms in RuO2, SnO2, and SnS2 for lithium-ion battery anode materials. J Phys Chem C 120:2036–2046CrossRefGoogle Scholar
  43. 43.
    Wang X, Yang Z, Sun X, Li X, Wang D, Wang P, He D (2011) NiO nanocone array electrode with high capacity and rate capability for li-ion batteries. J Mater Chem 21:9988–9990CrossRefGoogle Scholar
  44. 44.
    Sun X, Si W, Xi L, Liu B, Liu X, Yan C, Schmidt OG (2015) In situ-formed, amorphous, oxygen-enabled germanium anode with robust cycle life for reversible lithium storage. ChemElectroChem 2:737–742CrossRefGoogle Scholar
  45. 45.
    Sun X, Wang X, Feng N, Qiao L, Li X, He D (2012) A new carbonaceous material derived from biomass source peels as an improved anode for lithium ion batteries. J Anal Appl Pyrolysis 100:181–185CrossRefGoogle Scholar
  46. 46.
    Wang X, Li X, Sun X, Li F, Liu Q, Wang Q, He D (2011) Nanostructured NiO electrode for high rate li-ion batteries. J Mater Chem 21:3571–3573CrossRefGoogle Scholar
  47. 47.
    Li H, Balaya P, Maier J (2004) Li-storage via heterogeneous reaction in selected binary metal fluorides and oxides. J Electrochem Soc 151:A1878–A1885CrossRefGoogle Scholar
  48. 48.
    Han S, Jang B, Kim T, Oh SM, Hyeon T (2005) Simple synthesis of hollow tin dioxide microspheres and their application to lithium-ion battery anodes. Adv Funct Mater 15:1845–1850CrossRefGoogle Scholar
  49. 49.
    Wang D, Yang J, Li X, Geng D, Li R, Cai M, Sham T-K, Sun X (2013) Layer by layer assembly of sandwiched graphene/SnO2 nanorod/carbon nanostructures with ultrahigh lithium ion storage properties. Energy Environ Sci 6:2900–2906CrossRefGoogle Scholar
  50. 50.
    Sun X, Si W, Liu X, Deng J, Xi L, Liu L, Yan C, Schmidt OG (2014) Multifunctional Ni/NiO hybrid nanomembranes as anode materials for high-rate li-ion batteries. Nano Energy 9:168–175CrossRefGoogle Scholar
  51. 51.
    Zhao Y, Li J, Ding Y, Guan L (2011) Single-walled carbon nanohorns coated with Fe2O3 as a superior anode material for lithium ion batteries. Chem Commun 47:7416–7418CrossRefGoogle Scholar
  52. 52.
    Sun X, Hao G-P, Lu X, Xi L, Liu B, Si W, Ma C, Liu Q, Zhang Q, Kaskel S, Schmidt OG (2016) High-defect hydrophilic carbon cuboids anchored with co/CoO nanoparticles as highly efficient and ultra-stable lithium-ion battery anodes. J Mater Chem A 4:10166–10173CrossRefGoogle Scholar
  53. 53.
    Qiao L, Li X, Sun X, Yue H, He D (2017) Synthesis and lithium storage properties of interconnected fullerene-like carbon nanofibers encapsulated with tin nanoparticles. J Mater Sci 52:6969–6975CrossRefGoogle Scholar
  54. 54.
    Su L, Zhou Z, Shen P (2012) Ni/C hierarchical nanostructures with Ni nanoparticles highly dispersed in N-containing carbon nanosheets: origin of li storage capacity. J Phys Chem C 116:23974–23980CrossRefGoogle Scholar
  55. 55.
    Hu R, Chen D, Waller G, Ouyang Y, Chen Y, Zhao B, Rainwater B, Yang C, Zhu M, Liu M (2016) Dramatically enhanced reversibility of Li2O in SnO2-based electrodes: the effect of nanostructure on high initial reversible capacity. Energy Environ Sci 9:595–603CrossRefGoogle Scholar
  56. 56.
    Wang X, Zhai G, Wang H (2015) Synthesis and electrochemical investigation of tin dioxide-based elastic hollow microspheres for lithium storage. Ionics 21:1533–1538CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  • Xiaolei Sun
    • 1
  • Li Qiao
    • 2
  • Li Qiao
    • 3
  • Hua Pang
    • 4
  • Dan Li
    • 5
  1. 1.Leibniz Institute for Solid State and Materials Research (IFW Dresden)DresdenGermany
  2. 2.State Key laboratory of Solid Lubrication, Lanzhou Institute of Chemical PhysicsChinese of Academy of SciencesLanzhouPeople’s Republic of China
  3. 3.Department of Basic ResearchQinghai UniversityXiningPeople’s Republic of China
  4. 4.Dresden University of TechnologyDresdenGermany
  5. 5.Institute of Process EngineeringChinese Academy of SciencesBeijingPeople’s Republic of China

Personalised recommendations