Ionics

, Volume 23, Issue 11, pp 3169–3176 | Cite as

In situ deposition of Pd nanoparticles on carbon paper and their electroactivity for ethanol oxidation

  • Yuanyuan Zhang
  • Qingfeng Yi
  • Tao Zou
  • Xiulin Zhou
  • Huidong Nie
Original Paper
  • 185 Downloads

Abstract

In this work, Pd and PdNi nanostructured particles have been deposited on the carbon paper (CP) by a novel and simple method of in situ deposition. The prepared catalysts were named as Pd-situ/CP, PdNi-situ/CP. The as-formed Pd and Pd-Ni nanoparticles are well dispersed with the sizes of 15∼24 nm for Pd-situ/CP, 8∼11 nm for Pd9Ni1-situ/CP, and 8∼14 nm for Pd8Ni2-situ/CP. Their electroactivity for ethanol oxidation in 1 mol L−1 NaOH solution was investigated with cyclic voltammetry, chronoamperometry, and electrochemical impedance spectroscopy. The samples fabricated by this in situ deposition method (Pd-situ/CP, Pd9Ni1-situ/CP, and Pd8Ni2-situ/CP) exhibit both higher electroactivity and higher electrocatalytic stability for ethanol oxidation than the Pd/CP obtained by the conventional NaBH4 reduction method. This new method of preparation of catalyst nanoparticles is simple and hardly leads to the loss of catalyst particles due to the omitted filtration step of catalyst particles.

Keywords

Ethanol oxidation Pd electrocatalyst Carbon paper In situ deposition 

Notes

Acknowledgements

The financial support of this work by the National Natural Science Foundation of China (21376070) is gratefully acknowledged.

References

  1. 1.
    Barzegari MM, Dardel M, Alizadeh E, Ramiar A (2016) Dynamic modeling and validation studies of dead-end cascade H2/O2 PEM fuel cell stack with integrated humidifier and separator. Appl Energy 177:298–308CrossRefGoogle Scholar
  2. 2.
    Monsalve K, Mazurenko I, Lalaoui N, Le Goff A, Holzinger M, Infossi P, Nitsche S et al (2015) A H2/O2 enzymatic fuel cell as a sustainable power for a wireless device. Electrochem Commun 60:216–220CrossRefGoogle Scholar
  3. 3.
    Thanganathan U (2016) Synthesis and characterization of hybrid composite membranes and their properties: single cell performances based on carbon black catalyst/proton-conducting hybrid composite membrane for H2/O2 fuel cells. J Membr Sci 517:100–110CrossRefGoogle Scholar
  4. 4.
    Uma T, Mahalingam T, Kannan A, Cindrella L (2016) PEG based hybrid composite membranes and their properties for H2/O2 fuel cells. Int J Hydrog Energy 41:10896–10906CrossRefGoogle Scholar
  5. 5.
    Neelakandan S, Kanagaraj P, Nagendran A, Rana D, Matsuura T, Muthumeenal A (2015) Enhancing proton conduction of sulfonated poly (phenylene ether ether sulfone) membrane by charged surface modifying macromolecules for H2/O2 fuel cells. Renew Energy 78:306–313CrossRefGoogle Scholar
  6. 6.
    Mikolajczuk-Zychora A, Borodzinski A, Kedzierzawski P, Mierzwa B, Mazurkiewicz-Pawlicka M, Stobinski L et al (2016) Highly active carbon supported Pd cathode catalysts for direct formic acid fuel cells. Appl Surf Sci 388:645–652CrossRefGoogle Scholar
  7. 7.
    Wang K, Wang B, Chang J, Feng L, Xing W (2014) Formic acid electrooxidation catalyzed by Pd/SmOx-C hybrid catalyst in fuel cells. Electrochim Acta 150:329–336CrossRefGoogle Scholar
  8. 8.
    Moreno-Zuria A, Dector A, Cuevas-Muñiz FM, Esquivel JP, Sabaté N, Ledesma-García J et al (2014) Direct formic acid microfluidic fuel cell design and performance evolution. J Power Sources 269:783–788CrossRefGoogle Scholar
  9. 9.
    Lesiak B, Mazurkiewicz M, Malolepszy A, Stobinski L, Mierzwa B, Mikolajczuk-Zychora A et al (2016) Effect of the Pd/MWCNTs anode catalysts preparation methods on their morphology and activity in a direct formic acid fuel cell. Appl Surf Sci 387:929–937CrossRefGoogle Scholar
  10. 10.
    Shen L, Li H, Lu L, Luo Y, Tang Y, Chen Y et al (2013) Improvement and mechanism of electrocatalytic performance of Pd–Ni/C anodic catalyst in direct formic acid fuel cell. Electrochim Acta 89:497–502CrossRefGoogle Scholar
  11. 11.
    Qi J, Benipal N, Liang C, Li W (2016) PdAg/CNT catalyzed alcohol oxidation reaction for high-performance anion exchange membrane direct alcohol fuel cell (alcohol = methanol, ethanol, ethylene glycol and glycerol). Appl Catal B Environ 199:494–503CrossRefGoogle Scholar
  12. 12.
    Figueiredo MC, Solla-Gullón J, Vidal-Iglesias FJ, Nisula M, Feliu JM, Kallio T (2015) Carbon-supported shape-controlled Pt nanoparticle electrocatalysts for direct alcohol fuel cells. Electrochem Commun 55:47–50CrossRefGoogle Scholar
  13. 13.
    Carrión-Satorre S, Montiel M, Escudero-Cid R, Fierro JLG, Fatás E, Ocón P (2016) Performance of carbon-supported palladium and palladium single bond ruthenium catalysts for alkaline membrane direct ethanol fuel cells. Int J Hydrog Energy 41:8954–8962CrossRefGoogle Scholar
  14. 14.
    Figueiredo MC, Sorsa O, Doan N, Pohjalainen E, Hildebrand H, Schmuki P et al (2015) Direct alcohol fuel cells: increasing platinum performance by modification with sp-group metals. J Power Sources 275:341–350CrossRefGoogle Scholar
  15. 15.
    Jurzinsky T, Cremers C, Jung F, Pinkwart K, Tübke J (2015) Development of materials for anion-exchange membrane direct alcohol fuel cells. Int J Hydrog Energy 40:11569–11576CrossRefGoogle Scholar
  16. 16.
    Yi QF, Zou T, Zhang YY, Li XP, Xu GR, Nie HD et al (2016) A novel alcohol/iron (III) fuel cell. J Power Sources 321:219–225CrossRefGoogle Scholar
  17. 17.
    Yi QF, Chen QH (2015) In situ preparation and high electrocatalytic activity of binary Pd-Ni nanocatalysts with low Pd-loadings. Electrochim Acta 182:96–103CrossRefGoogle Scholar
  18. 18.
    Yi QF, Chu H, Tang MX, Yang Z, Chen QH, Liu XP (2015) Carbon nanotube-supported binary silver-based nanocatalysts for oxygen reduction reaction in alkaline media. J Electroanal Chem 739:178–186CrossRefGoogle Scholar
  19. 19.
    Wang Y, Zhao Y, Yin J, Liu M, Dong Q, Su Y (2014) Synthesis and electrocatalytic alcohol oxidation performance of Pd–Co bimetallic nanoparticles supported on grapheme. Int J Hydrog Energy 39:1325–1335CrossRefGoogle Scholar
  20. 20.
    Zhang M, Yan Z, Xie J (2012) Core/shell Ni@Pd nanoparticles supported on MWCNTs at improved electrocatalytic performance for alcohol oxidation in alkaline media. Electrochim Acta 77:237–243CrossRefGoogle Scholar
  21. 21.
    Yi QF, Chu H, Chen QH, Yang Z, Liu XP (2015) High performance Pd, PdNi, PdSn and PdSnNi nanocatalysts supported on carbon nanotubes for electrooxidation of C2-C4 alcohols. Electroanalysis 27:388–397CrossRefGoogle Scholar
  22. 22.
    Rego R, Oliveira C, Velázquez A, Cabot P-L (2010) A new route to prepare carbon paper-supported Pd catalyst for oxygen reduction reaction. Electrochem Commun 12:745–748CrossRefGoogle Scholar
  23. 23.
    Xu CW, Wang H, Shen PK, Jiang SP (2007) Highly ordered Pd nanowire arrays as effective electrocatalysts for ethanol oxidation in direct alcohol fuel cells. Adv Mater 19:4256–4259CrossRefGoogle Scholar
  24. 24.
    Xu CW, Cheng LQ, Shen PK, Liu YL (2007) Methanol and ethanol electrooxidation on Pt and Pd supported on carbon microspheres in alkaline media. Electrochem Commun 9:997–1001CrossRefGoogle Scholar
  25. 25.
    Zalineeva A, Serov A, Padilla M, Martinez U, Artyushkova K, Baranton S, Coutanceau C, Atanassov P (2015) Nano-structured Pd-Sn catalysts for alcohol electro-oxidation in alkaline medium. Electrochem Commun 57:48–51CrossRefGoogle Scholar
  26. 26.
    Modibedi RM, Masombuka T, Mathe MK (2011) Carbon supported Pd-Sn and Pd-Ru-Sn nanocatalysts for ethanol electro-oxidation in alkaline medium. Int J Hydrog Energy 36:4664–4672CrossRefGoogle Scholar
  27. 27.
    Jongsomjit S, Prapainainar P, Sombatmankhong K (2016) Synthesis and characterisation of Pd-Ni-Sn electrocatalyst for use in direct ethanol fuel cells. Solid State Ionics 288:147–153CrossRefGoogle Scholar
  28. 28.
    Yang GH, Zhou YZ, Pan HB, Zhu CZ, Fu SF, Wai CM, Du D, Zhu JJ, Lin YH (2016) Ultrasonic-assisted synthesis of Pd-Pt/carbon nanotubes nanocomposites for enhanced electro-oxidation of ethanol and methanol in alkaline medium. Ultrason Sonochem 28:192–198CrossRefGoogle Scholar
  29. 29.
    Luo WC, Zhou HH, Fu CP, Huang ZY, Gao N, Kuang YF (2016) Preparation and characterization of porous sponge-like Pd@Pt nanotubes with high catalytic activity for ethanol oxidation. Mater Lett 173:43–46CrossRefGoogle Scholar
  30. 30.
    Sieben JM, Alvarez AE, Comignani V, Duarte MME (2014) Methanol and ethanol oxidation on carbon supported nanostructured Cu core Pt-Pd shell electrocatalysts synthesized via redox displacement. Int J Hydrog Energy 39:11547–11556CrossRefGoogle Scholar
  31. 31.
    Hameed RMA (2017) Facile preparation of Pd-metal oxide/C electrocatalysts and their application in the electrocatalytic oxidation of ethanol. Appl Surf Sci 411:91–104Google Scholar
  32. 32.
    Rostami H, Rostami AA, Omrani A (2016) An electrochemical method to prepare of Pd/Cu2O/MWCNT nanostructure as an anode electrocatalyst for alkaline direct ethanol fuel cells. Electrochim Acta 194:431–440CrossRefGoogle Scholar
  33. 33.
    Song YY, Zhang XL, Yang S, Wei X, Sun ZB (2016) Electrocatalytic performance for methanol oxidation on nanoporous Pd/NiO composites prepared by one-step dealloying. Fuel 181:269–276CrossRefGoogle Scholar
  34. 34.
    Xu CW, Shen PK, Liu YL (2007) Ethanol electrooxidation on Pt/C and Pd/C catalysts promoted with oxide. J Power Sources 164:527–531CrossRefGoogle Scholar
  35. 35.
    He L, Gao JB, Yao ZL, Sun PY (2012) Characterization and catalytic performance evaluation of Pd/Ni/Al2O3 catalyst for hydrogenation of heavy reforming aromatic oil. Pet Process Petrochem 43:39–43Google Scholar
  36. 36.
    Liang ZX, Zhao TS, Xu JB, Zhu LD (2009) Mechanism study of the ethanol oxidation reaction on palladium in alkaline media. Electrochim Acta 54:2203–2208CrossRefGoogle Scholar
  37. 37.
    Zhang ZY, Xin L, Sun K, Li WZ (2011) Pd-Ni electrocatalysts for efficient ethanol oxidation reaction in alkaline electrolyte. Int J Hydrog Energy 36:12686–12697CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  • Yuanyuan Zhang
    • 1
  • Qingfeng Yi
    • 1
  • Tao Zou
    • 1
  • Xiulin Zhou
    • 1
  • Huidong Nie
    • 1
  1. 1.School of Chemistry and Chemical EngineeringHunan University of Science and TechnologyXiangtanChina

Personalised recommendations