, Volume 23, Issue 11, pp 3211–3218 | Cite as

Studies on the electrochemical and dopamine sensing properties of AgNP-modified carboxylated cellulose nanocrystal-doped poly(3,4-ethylenedioxythiophene)

  • Guiyun Xu
  • Shaoping Liang
  • Mingming Zhang
  • Jinshi Fan
  • Jiuju Feng
  • Xijuan Yu
Original Paper


Carboxylated cellulose nanocrystals (CNCC) were synthesized by treating microcrystalline cellulose with ammonium persulfate. Silver nanoparticles (AgNPs) were prepared on the surface of CNCC using NaBH4 as reductant. Novel conducting nanocomposites of poly(3,4-ethylenedioxythiophene) (PEDOT) doped with AgNPs/CNCC were electrodeposited on the surface of the glassy carbon electrode. The nanocomposites prepared in various ratios of PEDOT, CNCC, and AgNPs were characterized by scanning electron microscopy, transmission electron microscope, electrochemical impedance spectroscopy, cyclic voltammetry, and differential pulse voltammetry. The prepared PEDOT/AgNPs/CNCC showed much low electrochemical impedance and very good response towards the oxidation of dopamine. Based on these findings, a highly stable, sensitive, and selective amperometric sensor for the detection of dopamine was developed. Operated at 0.20 V (vs. Ag/AgCl), the sensor can detect dopamine in the range of 0.05 to 782 μM with a 17-nM detection limit.


Carboxylated nanocrystalline cellulose Silver nanoparticles Poly(3,4-ethylenedioxythiophene) Electrochemical impedance spectroscopy Amperometric sensor Dopamine 



This research was supported by the National Natural Science Foundation of China (21475118), the Natural Science Foundation of Shandong Province of China (ZR2013BQ004), the Project of Shandong Province Higher Educational Science and Technology Program (J15LC14), and the Open Research Fund of Top Key Discipline of Chemistry in Zhejiang Provincial Colleges and Key Laboratory of the Ministry of Education for Advanced Catalysis Materials (Zhejiang Normal University, ZJHX1511).

Supplementary material

11581_2017_2112_MOESM1_ESM.doc (210 kb)
Fig. S1 (DOC 210 kb)
11581_2017_2112_MOESM2_ESM.doc (38 kb)
Fig. S2 (DOC 38 kb)
11581_2017_2112_MOESM3_ESM.doc (124 kb)
Fig. S3 (DOC 124 kb)
11581_2017_2112_MOESM4_ESM.doc (58 kb)
Fig. S4 (DOC 58 kb)
11581_2017_2112_MOESM5_ESM.doc (75 kb)
Fig. S5 (DOC 75 kb)


  1. 1.
    Zhang W, Yuan R, Chai YQ, Zhang Y, Chen SH (2012) A simple strategy based on lanthanum–multiwalled carbon nanotube nanocomposites for simultaneous determination of ascorbic acid, dopamine, uric acid and nitrite. Sens Actuators B Chem 166:601–607CrossRefGoogle Scholar
  2. 2.
    Mohadesi A, Karimi MA, Pourfarsi M (2011) A new negative charged self-assembled monolayer for selective electroanalytical determination of dopamine in the presence of ascorbic acid. Int J Electrochem Sci 6:309–316Google Scholar
  3. 3.
    Wang WT, Xu GY, Cui XT, Sheng G, Luo XL (2014) Enhanced catalytic and dopamine sensing properties of electrochemically reduced conducting polymer nanocomposite doped with pure graphene oxide. Biosens Bioelectron 58:153–156CrossRefGoogle Scholar
  4. 4.
    Xu GY, Wang WT, Li BB, Luo ZL, Luo XL (2015) A dopamine sensor based on a carbon paste electrode modified with DNA-doped poly(3,4-ethylene-dioxythiophene). Microchim Acta 182:679–685CrossRefGoogle Scholar
  5. 5.
    Matos IO, Alves WA (2011) Electrochemical determination of dopamine based on self-assembled peptide nanostructure. ACS Appl Mater Interfaces 3:4437–4443CrossRefGoogle Scholar
  6. 6.
    Fan JS, Shao W, Xu GY, Cui XT, Luo XL (2014) Preparation and electrochemical catalytic application of nanocrystalline cellulose doped poly(3,4-ethylenedioxythiophene) conducting polymer nanocomposites. RSC Adv 4(46):24328–24333CrossRefGoogle Scholar
  7. 7.
    Castro-Guerrero CF, Gray DG (2014) Chiral nematic phase formation by aqueous suspensions of cellulose nanocrystals prepared by oxidation with ammonium persulfate. Cellulose 21:2567–2577CrossRefGoogle Scholar
  8. 8.
    Yang H, Alam MN, van de Ven TG (2013) Highly charged nanocrystalline cellulose and dicarboxylated cellulose from periodate and chlorite oxidized cellulose fibers. Cellulose 20(4):1865–1875CrossRefGoogle Scholar
  9. 9.
    Yang H, Tejado A, Alam N, Antal M, van de Ven TG (2012) Films prepared from electrosterically stabilized nanocrystalline cellulose. Langmuir 28(20):7834–7842CrossRefGoogle Scholar
  10. 10.
    Lam E, Leung AC, Liu Y, Majid E, Hrapovic S, Male KB, Luong JH (2013) Green strategy guided by Raman spectroscopy for the synthesis of ammonium carboxylated nanocrystalline cellulose and the recovery of byproducts. ACS Sustain Chem Eng 1(2):278–283CrossRefGoogle Scholar
  11. 11.
    Leung ACW, Luong JHT, Hrapovic S, Lam E, Liu Y, Male KB, Mahmoud K, Rho D (2010) Cellulose nanocrystal from renewable biomass. National Research Council of Canada, Canada 000372Google Scholar
  12. 12.
    Leung AC, Hrapovic S, Lam E, Liu Y, Male KB, Mahmoud KA, Luong JH (2011) Characteristics and properties of carboxylated cellulose nanocrystals prepared from a novel one-step procedure. Small 7(3):302–305CrossRefGoogle Scholar
  13. 13.
    Ramaraju B, Imae T, Destaye AG (2015) Ag nanoparticle-immobilized cellulose nanofibril films for environmental conservation. Appl Catal A 492:184–189CrossRefGoogle Scholar
  14. 14.
    Dong H, Snyder JF, Tran DT, Leadore JL (2013) Hydrogel, aerogel and film of cellulose nanofibrils functionalized with silver nanoparticles. Carbohydr Polym 95(2):760–767CrossRefGoogle Scholar
  15. 15.
    Liu H, Wang D, Song Z, Shang S (2011) Preparation of silver nanoparticles on cellulose nanocrystals and the application in electrochemical detection of DNA hybridization. Cellulose 18(1):67–74CrossRefGoogle Scholar
  16. 16.
    Roncali J, Blanchard P, Frère P (2005) 3,4-Ethylenedioxythiophene (EDOT) as a versatile building block for advanced functional π-conjugated systems. J Mater Chem 15(16):1589–1610CrossRefGoogle Scholar
  17. 17.
    Hendricks JL, Chikar JA, Crumling MA, Raphael Y, Martin DC (2008) Localized cell and drug delivery for auditory prostheses. Hear Res 242(1):117–131CrossRefGoogle Scholar
  18. 18.
    Luo XL, Weaver CL, Zhou DD, Greenberg R, Cui XT (2011) Highly stable carbon nanotube doped poly(3,4-ethylenedioxythiophene) for chronic neural stimulation. Biomaterials 32(24):5551–5557CrossRefGoogle Scholar
  19. 19.
    Zou JH, Tran B, Huo Q, Zhai L (2009) Transparent carbon nanotube/poly(3,4-ethylenedioxythiophene) composite electrical conductors. Soft Mater 7(4):355–365CrossRefGoogle Scholar
  20. 20.
    Xu GY, Li BB, Cui XT, Ling LY, Luo XL (2013) Electrodeposited conducting polymer PEDOT doped with pure carbon nanotubes for the detection of dopamine in the presence of ascorbic acid. Sensors Actuators B Chem 188:405–410CrossRefGoogle Scholar
  21. 21.
    Sheng G, Xu GY, Xu SH, Wang SY, Luo XL (2015) Cost-effective preparation and sensing application of conducting polymer PEDOT/ionic liquid nanocomposite with excellent electrochemical properties. RSC Adv 5(27):20741–20746CrossRefGoogle Scholar
  22. 22.
    Luo XL, Killard AJ, Smyth MR (2007) Nanocomposite and nanoporous polyaniline conducting polymers exhibit enhanced catalysis of nitrite reduction. Chem Eur J 13(7):2138–2143CrossRefGoogle Scholar
  23. 23.
    Singh J, Roychoudhury A, Srivastava M, Chaudhary V, Prasanna R, Lee DW, Malhotra BD (2013) Highly efficient bienzyme functionalized biocompatible nanostructured nickel ferrite–chitosan nanocomposite platform for biomedical application. J Phys Chem C 117(16):8491–8502CrossRefGoogle Scholar
  24. 24.
    Periyakaruppan A, Gandhiraman RP, Meyyappan M, Koehne JE (2013) Label-free detection of cardiac troponin-I using carbon nanofiber based nanoelectrode arrays. Anal Chem 85(8):3858–3863CrossRefGoogle Scholar
  25. 25.
    Song C, Xie GM, Wang L, Liu LZ, Tian G, Xiang H (2014) DNA-based hybridization chain reaction for an ultrasensitive cancer marker EBNA-1 electrochemical immunosensor. Biosens Bioelectron 58:68–74CrossRefGoogle Scholar
  26. 26.
    Yu SJ, Luo CH, Wang LW, Peng H, Zhu ZQ (2013) Poly(3,4-ethylenedioxythiophene)-modified Ni/silicon microchannel plate electrode for the simultaneous determination of ascorbic acid, dopamine and uric acid. Analyst 138(4):1149–1155CrossRefGoogle Scholar
  27. 27.
    Zeng YB, Zhou Y, Kong L, Zhou TS, Shi GY (2013) A novel composite of SiO2-coated graphene oxide and molecularly imprinted polymers for electrochemical sensing dopamine. Biosens Bioelectron 45:25–33CrossRefGoogle Scholar
  28. 28.
    Song MJ, Lee SK, Kim JH, Lim DS (2012) Dopamine sensor based on a boron-doped diamond electrode modified with a polyaniline/Au nanocomposites in the presence of ascorbic acid. Anal Sci 28(6):583–587CrossRefGoogle Scholar
  29. 29.
    Jiang XH, Lin XQ (2005) Immobilization of DNA on carbon fiber microelectrodes by using overoxidized polypyrrole template for selective detection of dopamine and epinephrine in the presence of high concentrations of ascorbic acid and uric acid. Analyst 130(3):391–396CrossRefGoogle Scholar
  30. 30.
    Mazloum-Ardakani M, Beitollahi H, Ganjipour B, Naeimi H, Nejati M (2009) Electrochemical and catalytic investigations of dopamine and uric acid by modified carbon nanotube paste electrode. Bioelectrochemistry 75(1):1–8CrossRefGoogle Scholar
  31. 31.
    Zou HL, Li BL, Luo HQ, Li NB (2015) A novel electrochemical biosensor based on hemin functionalized graphene oxide sheets for simultaneous determination of ascorbic acid, dopamine and uric acid. Sensors Actuators B Chem 207:535–541CrossRefGoogle Scholar
  32. 32.
    Yu B, Kuang D, Liu S, Liu C, Zhang T (2014) Template-assisted self-assembly method to prepare three-dimensional reduced graphene oxide for dopamine sensing. Sensors Actuators B Chem 205:120–126CrossRefGoogle Scholar
  33. 33.
    Yao H, Sun Y, Lin X, Tang Y, Huang L (2007) Electrochemical characterization of poly(eriochrome black T) modified glassy carbon electrode and its application to simultaneous determination of dopamine, ascorbic acid and uric acid. Electrochim Acta 52(20):6165–6171CrossRefGoogle Scholar
  34. 34.
    Cai WH, Lai T, Du HJ, Ye JS (2014) Electrochemical determination of ascorbic acid, dopamine and uric acid based on an exfoliated graphite paper electrode: a high performance flexible sensor. Sensors Actuators B Chem 193:492–500CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  • Guiyun Xu
    • 1
  • Shaoping Liang
    • 1
  • Mingming Zhang
    • 1
  • Jinshi Fan
    • 2
  • Jiuju Feng
    • 3
  • Xijuan Yu
    • 1
  1. 1.Key Laboratory of Sensor Analysis of Tumor Marker, Ministry of Education, College of Chemistry and Molecular EngineeringQingdao University of Science and TechnologyQingdaoChina
  2. 2.College of Chemical EngineeringQingdao University of Science and TechnologyQingdaoChina
  3. 3.College of Chemistry and Life SciencesZhejiang Normal UniversityJinhuaChina

Personalised recommendations