, Volume 23, Issue 11, pp 2981–2992 | Cite as

Roles of Al-doped ZnO (AZO) modification layer on improving electrochemical performance of LiNi1/3Co1/3Mn1/3O2 thin film cathode

  • Zhiqiang Hu
  • Zejun Deng
  • Qiuping Wei
  • Ting Zhao
  • Yijia Wang
  • Zhiming Yu
  • Li Ma
  • Kechao Zhou
Original Paper


Al-doped ZnO (AZO) was sputtered on the surface of LiNi1/3Co1/3Mn1/3O2 (NCM) thin film electrode via radio frequency magnetron sputtering, which was demonstrated to be a useful approach to enhance electrochemical performance of thin film electrode. The structure and morphology of the prepared electrodes were characterized by X-ray diffraction, scanning electron microscopy, energy dispersive spectrometer, and transmission electron microscopy techniques. The results clearly demonstrated that NCM thin film showed a strong (104) preferred orientation and AZO was uniformly covered on the surface of NCM electrode. After 200 cycles at 50 μA μm−1 cm−2, the NCM/AZO-60s electrode delivered highest discharge capacity (78.1 μAh μm−1 cm−2) compared with that of the NCM/AZO-120s electrode (62.4 μAh μm−1 cm−2) and the bare NCM electrode (22.3 μAh μm−1 cm−2). In addition, the rate capability of the NCM/AZO-60s electrode was superior to the NCM/AZO-120s and bare NCM electrodes. The improved electrochemical performance can be ascribed to the appropriate thickness of the AZO coating layer, which not only acted as HF scavenger to keep a stable electrode/electrolyte interface but also reduced the charge transfer resistance during cycling.


Roles of Al-doped ZnO (AZO) modification layer LiNi1/3Co1/3Mn1/3O2 thin film cathode HF scavenger Electrode/electrolyte interface Performance improvement of thin film batteries 



We gratefully acknowledge the National Natural Science Foundation of China (No. 51301211 and No. 21271188) and the State Key Laboratory of Powder Metallurgy for financial support.


  1. 1.
    Bock K, Yacoub-George E, Hell W, Drost A, Wolf H, Bollmann D, Landesberger C, Klink G, Gieser H, Kutter C (2014) Multifunctional system integration in flexible substrates. In: 2014 I.E. 64th Electronic Components and Technology Conference (ECTC), IEEE, pp 1482–1487Google Scholar
  2. 2.
    Pelé V, Flamary F, Bourgeois L, Pecquenard B, Le Cras F (2015) Perfect reversibility of the lithium insertion in FeS2: the combined effects of all-solid-state and thin film cell configurations. Electrochem Commun 51:81–84. doi: 10.1016/j.elecom.2014.12.009 CrossRefGoogle Scholar
  3. 3.
    Yang S, Yan B, Lu L, Zeng K (2016) Grain boundary effects on Li-ion diffusion in a Li1.2Co0.13Ni0.13Mn0.54O2 thin film cathode studied by scanning probe microscopy techniques. RSC Adv 6(96):94000–94009. doi: 10.1039/C6RA17681J CrossRefGoogle Scholar
  4. 4.
    Shin DW, Choi J-W, Ahn J-P, Choi W-K, Cho YS, Yoon S-J (2010) ZrO2-modified LiMn2O4 thin-film cathodes prepared by pulsed laser deposition. J Electrochem Soc 157(5):A567–A570. doi: 10.1149/1.3332745 CrossRefGoogle Scholar
  5. 5.
    Zhou Y, Xue M, Fu Z (2013) Nanostructured thin film electrodes for lithium storage and all-solid-state thin-film lithium batteries. J Power Sources 234(21):310–332. doi: 10.1016/j.jpowsour.2013.01.183 Google Scholar
  6. 6.
    Li L, Wang L, Zhang X, Xie M, Wu F, Chen R (2015) Structural and electrochemical study of hierarchical LiNi1/3Co1/3Mn1/3O2 cathode material for lithium-ion batteries. ACS Appl Mater Interfaces 7(39):21939–21947. doi: 10.1021/acsami.5b06584 CrossRefGoogle Scholar
  7. 7.
    Zhang J, Li Z, Gao R, Hu Z, Liu X (2015) High rate capability and excellent thermal stability of Li+-conductive Li2ZrO3-coated LiNi1/3Co1/3Mn1/3O2 via a synchronous lithiation strategy. J Phys Chem C 119(35):20350–20356. doi: 10.1021/acs.jpcc.5b06858 CrossRefGoogle Scholar
  8. 8.
    Kawamura T, Okada S, J-i Y (2006) Decomposition reaction of LiPF6-based electrolytes for lithium ion cells. J Power Sources 156(2):547–554. doi: 10.1016/j.jpowsour.2005.05.084 CrossRefGoogle Scholar
  9. 9.
    Plakhotnyk AV, Ernst L, Schmutzler R (2005) Hydrolysis in the system LiPF6-propylene carbonate-dimethyl carbonate-H2O. J Fluor Chem 126(1):27–31. doi: 10.1016/j.jfluchem.2004.09.027 CrossRefGoogle Scholar
  10. 10.
    Tasaki K, Kanda K, Nakamura S, Ue M (2003) Decomposition of LiPF6 and stability of PF5 in Li-ion battery electrolytes. J Electrochem Soc 83(2):181–190. doi: 10.1149/1.1622406 Google Scholar
  11. 11.
    Sloop SE, Pugh JK, Wang S, Kerr JB, Kinoshita K (2001) Chemical reactivity of PF5 and LiPF6 in ethylene carbonate/dimethyl carbonate solutions. Electrochem Solid-State Lett 4(4):A42–A44. doi: 10.1149/1.1353158 CrossRefGoogle Scholar
  12. 12.
    Campion CL, Li W, Lucht BL (2005) Thermal decomposition of LiPF6-based electrolytes for lithium-ion batteries. J Electrochem Soc 152(12):35–42. doi: 10.1149/1.2083267 CrossRefGoogle Scholar
  13. 13.
    Borodin O, Jow TR (2011) Quantum chemistry studies of the oxidative stability of carbonate, sulfone and sulfonate-based electrolytes doped with BF4−, PF6 anions. ECS Trans 33(28):77–84. doi: 10.1149/1.3563092 CrossRefGoogle Scholar
  14. 14.
    Xing L, Borodin O, Smith GD, Li W (2011) Density functional theory study of the role of anions on the oxidative decomposition reaction of propylene carbonate. J Mater Chem A 115(47):13896–13905. doi: 10.1021/jp206153n Google Scholar
  15. 15.
    Pieczonka NPW, Liu Z, Lu P, Olson KL, Moote J, Powell BR, Kim JH (2013) Understanding transition-metal dissolution behavior in LiNi0.5Mn1.5O4 high-voltage spinel for lithium ion batteries. J Phys Chem C 117:15947–15957. doi: 10.1021/jp405158m CrossRefGoogle Scholar
  16. 16.
    Kim JH, Pieczonka NP, Yang L (2014) Challenges and approaches for high-voltage spinel lithium-ion batteries. ChemPhysChem 15(10):1940. doi: 10.1002/cphc.201400052 CrossRefGoogle Scholar
  17. 17.
    Hong D, Guo Y, Wang H, Zhou J, Fang H-T (2015) Mechanism for improving the cycle performance of LiNi0.5Mn1.5O4by RuO2 surface modification and increasing discharge cut-off potentials. J Mater Chem A 3(30):15457–15465. doi: 10.1039/c5ta02255j CrossRefGoogle Scholar
  18. 18.
    Li B, Xing L, Xu M, Lin H, Li W (2013) New solution to instability of spinel LiNi0.5Mn1.5O4 as cathode for lithium ion battery at elevated temperature. Electrochem Commun 34(5):48–51. doi: 10.1016/j.elecom.2013.05.022 CrossRefGoogle Scholar
  19. 19.
    Vetter J, Novák P, Wagner MR, Veit C, Möller KC, Besenhard JO, Winter M, Wohlfahrt-Mehrens M, Vogler C, Hammouche A (2005) Ageing mechanisms in lithium-ion batteries. J Power Sources 147(1–2):269–281. doi: 10.1016/j.jpowsour.2005.01.006 CrossRefGoogle Scholar
  20. 20.
    He Y, Yu X, Wang Y, Li H, Huang X (2011) Alumina-coated patterned amorphous silicon as the anode for a lithium-ion battery with high coulombic efficiency. Adv Mater 23(42):4938–4941. doi: 10.1002/adma.201102568 CrossRefGoogle Scholar
  21. 21.
    Luo J-Y, Cui W-J, He P, Xia Y-Y (2010) Raising the cycling stability of aqueous lithium-ion batteries by eliminating oxygen in the electrolyte. Nat Chem 2(9):760–765. doi: 10.1038/nchem.763 CrossRefGoogle Scholar
  22. 22.
    Zhai J, M-s Z, Wang Y-z (2014) Effect of Al2O3-coating on the electrochemical performances of Li3V2(PO4)3/C cathode material. J Solid State Electrochem 18(10):2857–2862. doi: 10.1007/s10008-014-2545-5 CrossRefGoogle Scholar
  23. 23.
    Ghanty C, Dahiya P, Basu RN, Chang J-K, Majumder S (2015) Improvement of the electrochemical characteristics of lithium and manganese rich layered cathode materials: effect of surface coating. J Electrochem Soc 162(10):A1957–A1965. doi: 10.1149/2.0141510jes CrossRefGoogle Scholar
  24. 24.
    Chen Y, Zhang Y, Chen B, Wang Z, Lu C (2014) An approach to application for LiNi0.6Co0.2Mn0.2O2 cathode material at high cutoff voltage by TiO2 coating. J Power Sources 256:20–27. doi: 10.1016/j.jpowsour.2014.01.061 CrossRefGoogle Scholar
  25. 25.
    Lai Y-Q, Xu M, Zhang Z-A, Gao C-H, Wang P, Yu Z-Y (2016) Optimized structure stability and electrochemical performance of LiNi0.8Co0.15Al0.05O2 by sputtering nanoscale ZnO film. J Power Sources 309:20–26. doi: 10.1016/j.jpowsour.2016.01.079 CrossRefGoogle Scholar
  26. 26.
    Kong J-Z, Zhai H-F, Qian X, Wang M, Wang Q-Z, Li A-D, Li H, Zhou F (2017) Improved electrochemical performance of Li1.2Mn0.54Ni0.13Co0.13O2 cathode material coated with ultrathin ZnO. J Alloys Compd 694:848–856. doi: 10.1016/j.jallcom.2016.10.045 CrossRefGoogle Scholar
  27. 27.
    Rossnagel S (2001) Sputtering and sputter deposition. In: Handbook of thin film deposition processes and techniques, Second Edn. William Andrew Publishing, Norwich, NY, pp 319–348. doi: 10.1016/B978–081551442–8.50013-4
  28. 28.
    Liao C-L, Fung K-Z (2004) Lithium cobalt oxide cathode film prepared by rf sputtering. J Power Sources 128(2):263–269. doi: 10.1016/j.jpowsour.2003.09.065 CrossRefGoogle Scholar
  29. 29.
    Dudney NJ, Bates JB, Zuhr RA, Young S, Robertson JD, Jun HP, Hackney SA (1999) Nanocrystalline LixMn2-yO4 cathodes for solid-state thin-film rechargeable lithium batteries. J Electrochem Soc 146(7):2455–2464. doi: 10.1149/1.1391955 CrossRefGoogle Scholar
  30. 30.
    Whitacre JF, West WC, Ratnakumar BV (2001) The influence of target history and deposition geometry on RF magnetron sputtered LiCoO2 thin films. J Power Sources 103(1):134–139. doi: 10.1016/S0378-7753(01)00849-7 CrossRefGoogle Scholar
  31. 31.
    Ohzuku T, Makimura Y (2001) Layered lithium insertion material of LiCo1/3Ni1/3Mn1/3O2 for lithium-ion batteries. Chem Lett 7:642–643. doi: 10.1246/cl.2001.642 CrossRefGoogle Scholar
  32. 32.
    Bates J, Dudney N, Neudecker B, Hart F, Jun H, Hackney S (2000) Preferred orientation of polycrystalline LiCoO2 films. J Electrochem Soc 147(1):59–70. doi: 10.1149/1.1393157 CrossRefGoogle Scholar
  33. 33.
    Freund LB, Suresh S (2004) Thin film materials: stress, defect formation and surface evolution. Cambridge University Press, United KingdomCrossRefGoogle Scholar
  34. 34.
    Oh UC, Je JH (1993) Effects of strain energy on the preferred orientation of TiN thin films. J Appl Phys 74(3):1692–1696. doi: 10.1063/1.355297 CrossRefGoogle Scholar
  35. 35.
    Tan G, Wu F, Lu J, Chen R, Li L, Amine K (2014) Controllable crystalline preferred orientation in Li-Co-Ni-Mn oxide cathode thin films for all-solid-state lithium batteries. Nano 6(18):10611–10622. doi: 10.1039/c4nr02949f Google Scholar
  36. 36.
    Park SH, Oh SW, Kang SH, Belharouak I, Amine K, Sun YK (2007) Comparative study of different crystallographic structure of LiNi0.5Mn1.5O4-δ cathodes with wide operation voltage (2.0-5.0 V). Electrochim Acta 52(25):7226–7230. doi: 10.1016/j.electacta.2007.05.050 CrossRefGoogle Scholar
  37. 37.
    Edström K, Gustafsson T, Thomas JO (2004) The cathode–electrolyte interface in the Li-ion battery. Electrochim Acta 50(2–3):397–403. doi: 10.1016/j.electacta.2004.03.049 CrossRefGoogle Scholar
  38. 38.
    Kaspar J, Graczyk-Zajac M, Riedel R (2014) Determination of the chemical diffusion coefficient of Li-ions in carbon-rich silicon oxycarbide anodes by electro-analytical methods. Electrochim Acta 115:665–670. doi: 10.1016/j.electacta.2013.10.184 CrossRefGoogle Scholar
  39. 39.
    Deng J, Xi L, Wang L, Wang Z, Chung CY, Han X, Zhou H (2012) Electrochemical performance of LiNi1/3Co1/3Mn1/3O2 thin film electrodes prepared by pulsed laser deposition. J Power Sources 217(11):491–497. doi: 10.1016/j.jpowsour.2012.06.006 CrossRefGoogle Scholar
  40. 40.
    Tan G, Wu F, Li L, Chen R, Chen S (2013) Coralline glassy lithium phosphate-coated LiFePO4 cathodes with improved power capability for lithium ion batteries. J Phys Chem C 117(12):6013–6021. doi: 10.1021/jp309724q CrossRefGoogle Scholar
  41. 41.
    Qiu B, Wang J, Xia Y, Wei Z, Han S, Liu Z (2014) Enhanced electrochemical performance with surface coating by reactive magnetron sputtering on lithium-rich layered oxide electrodes. ACS Appl Mater Interfaces 6(12):9185–9193. doi: 10.1021/am501293y CrossRefGoogle Scholar
  42. 42.
    Gellert M, Gries KI, Sann J, Pfeifer E, Volz K, Roling B (2016) Impedance spectroscopic study of the charge transfer resistance at the interface between a LiNi0.5Mn1.5O4 high-voltage cathode film and a LiNbO3 coating film. Solid State Ionics 287:8–12. doi: 10.1016/j.ssi.2016.01.031 CrossRefGoogle Scholar
  43. 43.
    Wu F, Tan G, Lu J, Chen R, Li L, Amine K (2014) Stable nanostructured cathode with polycrystalline Li-deficient Li0.28Co0.29Ni0.30Mn0.20O2 for lithium-ion batteries. Nano Lett 14(3):1281–1287. doi: 10.1021/nl404215h CrossRefGoogle Scholar
  44. 44.
    Myung S-T, Amine K, Sun Y-K (2010) Surface modification of cathode materials from nano-to microscale for rechargeable lithium-ion batteries. J Mater Chem 20(34):7074–7095. doi: 10.1039/c0jm00508h CrossRefGoogle Scholar
  45. 45.
    Myung S, Izumi K, Komaba S, Sun Y, Hitoshi Yashiro A, Kumagai N (2005) Role of alumina coating on Li-Ni-Co-Mn-O particles as positive electrode material for lithium-ion batteries. Chem Mater 17(14):3695–3704. doi: 10.1021/cm050566s CrossRefGoogle Scholar
  46. 46.
    Tron A, Park YD, Mun J (2016) AlF3-coated LiMn2O4 as cathode material for aqueous rechargeable lithium battery with improved cycling stability. J Power Sources 325:360–364. doi: 10.1016/j.jpowsour.2016.06.049 CrossRefGoogle Scholar
  47. 47.
    Kim S-P, Van Duin AC, Shenoy VB (2011) Effect of electrolytes on the structure and evolution of the solid electrolyte interphase (SEI) in Li-ion batteries: a molecular dynamics study. J Power Sources 196(20):8590–8597. doi: 10.1016/j.jpowsour.2011.05.061 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  • Zhiqiang Hu
    • 1
  • Zejun Deng
    • 1
  • Qiuping Wei
    • 1
    • 2
  • Ting Zhao
    • 1
  • Yijia Wang
    • 1
  • Zhiming Yu
    • 1
    • 2
  • Li Ma
    • 2
  • Kechao Zhou
    • 2
  1. 1.School of Materials Science and EngineeringCentral South UniversityChangshaPeople’s Republic of China
  2. 2.State Key Laboratory of Powder MetallurgyCentral South UniversityChangshaPeople’s Republic of China

Personalised recommendations