Advertisement

Ionics

, Volume 23, Issue 11, pp 3137–3150 | Cite as

Dielectric, thermal, and electrochemical properties of PVC/PEMA blended polymer electrolytes complexed with zinc triflate salt

  • C. M. Sai Prasanna
  • S. Austin Suthanthiraraj
Original Paper

Abstract

A new solid polymer electrolyte system based on poly (vinyl chloride) (PVC) and poly (ethyl methacrylate) (PEMA) containing zinc triflate [Zn(CF3SO3)2] salt obtained in the form of thin film specimens using solution casting technique has been examined by means of complex impedance analysis, thermogravimetry (TG) and differential scanning calorimetric (DSC) studies, linear sweep voltammetry (LSV) and cyclic voltammetric (CV) measurements. The relevant mechanism of zinc ion transport involved in the case of the present polymer blend electrolyte viz., [PVC (30 wt%)/PEMA (70 wt%)] : x wt% [Zn(CF3SO3)2] (where x = 10, 15, 20, 25, 30, and 35, respectively) has been evaluated in terms of AC impedance method, dielectric and electrical modulus formalisms. The optimized composition of the chosen blended polymer electrolyte system having 30 wt% loading of zinc triflate salt exhibited a single glass transition temperature (T g) and possessed appreciable levels of thermal and electrochemical stability for possible utilization in zinc batteries.

Keywords

Polymer electrolyte Electric modulus TG DSC LSV CV 

Notes

Acknowledgements

One of the authors (C.M.S.) of the present work gratefully acknowledges the financial support received in the form of WOS-A program from the Department of Science and Technology (DST), New Delhi, under DST Sanction No. SR/WOS-A/PS-32/2013 dated 23 April 2014. The author (C.M.S.) would also like to express gratefulness to Mr. A. Narayanan, Department of Chemistry, IIT Madras for his kind help and invaluable aid in carrying out DSC and TGA measurements.

References

  1. 1.
    Ramesh S, Leen KH, Kumutha K, Arof AK (2007) FTIR studies of PVC/PMMA blend based polymer electrolytes. Spectrochim Acta Part A 66:1237–1242. doi: 10.1016/j.saa.2006.06.012 CrossRefGoogle Scholar
  2. 2.
    Ramesh S, Yahaya AH, Arof AK (2002) Dielectric behaviour of PVC-based polymer electrolytes. Solid State Ionics 152-153:291–294CrossRefGoogle Scholar
  3. 3.
    Ahmed MT, Fahmy T (1999) Distributed relaxations in PVC/PEMA polymer blends as revealed by thermostimulated depolarization current. Polym Test 18:589–599CrossRefGoogle Scholar
  4. 4.
    Fahmy T, Ahmed MT (2000) Alpha relaxation study in poly (vinyl chloride) / poly (ethyl methacrylate) blends using thermally stimulated currents. Polym Int 49:669–677CrossRefGoogle Scholar
  5. 5.
    Zakaria NA, Isa MIN, Mohamed NS, Subban RHY (2012) Characterization of polyvinyl chloride / polyethyl methacrylate polymer blend for use as polymer host in polymer electrolytes. J Appl Polym Sci 126:E419–E424. doi: 10.1002/app.36940 CrossRefGoogle Scholar
  6. 6.
    Subadevi R, Sivakumar M, Rajendran S, Wu H-C, Wu N-L (2012) Development and characterizations of PVdF-PEMA gel polymer electrolytes. Ionics 18:283–289. doi: 10.1007/s11581-011-0629-0 CrossRefGoogle Scholar
  7. 7.
    Sim LN, Majid SR, Arof AK (2012) FTIR studies of PEMA/PVdF-HFP blend polymer electrolyte system incorporated with LiCF3SO3 salt. Vib Spectrosc 58:57–66. doi: 10.1016/j.vibspec.2011.11.005 CrossRefGoogle Scholar
  8. 8.
    Anuar NK, Subban RHY, Mahamed NS (2012) Properties of PEMA-NH4CF3SO3 added to BMATSFI ionic liquid. Materials 5:2609–2620. doi: 10.3390/ma5122609 CrossRefGoogle Scholar
  9. 9.
    Chakrabarti R, Chakraborty D (2007) Modification of the physical, mechanical, and thermal properties of poly (vinyl chloride) by blending with poly (ethyl methacrylate). J Appl Polym Sci 105:1377–1384. doi: 10.1002/app.26256 CrossRefGoogle Scholar
  10. 10.
    Ramesh S, Chai MF (2007) Conductivity, dielectric behavior and FTIR studies of high molecular weight poly (vinylchloride)-lithium triflate polymer electrolytes. Mat Sci Eng B 139:240–245. doi: 10.1016/j.mseb.2007.03.003 CrossRefGoogle Scholar
  11. 11.
    Rajendran S, Uma T (2001) FTIR and conductivity studies of PVC based polymer electrolyte systems. Ionics 7:122–125CrossRefGoogle Scholar
  12. 12.
    Kim H-T, Kim K-B, Kim S-W, Park J-K (2000) Li-ion polymer battery based on phase-separated gel polymer electrolyte. Electrochim Acta 45:4001–4007CrossRefGoogle Scholar
  13. 13.
    Sellam, Hashmi SA (2012) Enhanced zinc ion transport in gel polymer electrolyte: effect of nano-sized ZnO dispersion. J Solid State Electrochem 16:3105–3114. doi: 10.1007/s10008-012-1733-4
  14. 14.
    Sai Prasanna CM, Austin Suthanthiraraj S (2015) Electrical, structural, and morphological studies of honeycomb-like microporous zinc-ion conducting poly (vinyl chloride) / poly (ethyl methacrylate) blend-based polymer electrolytes. Ionics 22:389–404. doi: 10.1007/s11581-015-1546-4 CrossRefGoogle Scholar
  15. 15.
    Ravi M, Bhavani S, Kiran Kumar K, Narasimaha Rao VVR (2013) Investigations on electrical properties of PVP:KIO4 polymer electrolyte films. Solid State Sci 19:85–93. doi: 10.1016/j.solidstatesciences.2013.02.006 CrossRefGoogle Scholar
  16. 16.
    Rama Mohan K, Achari VBS, Rao VVRN, Sharma AK (2011) Electrical and optical properties of (PEMA/PVC) polymer blend electrolyte doped with NaClO4. Polym Test 30:881–886. doi: 10.1016/j.polymertesting.2011.08.010 CrossRefGoogle Scholar
  17. 17.
    Baskaran R, Selvasekarapandian S, Kuwata N, Kawamura J, Hattori T (2007) Structure, thermal and transport properties of PVAc-LiClO4 solid polymer electrolytes. J Phys Chem Solids 68:407–412. doi: 10.1016/j.jpcs.2006.12.001 CrossRefGoogle Scholar
  18. 18.
    Armstrong RD (1974) The metal-solid electrolyte interphase. J Electroanal Chem Interfacial Electrochem 52:413–419CrossRefGoogle Scholar
  19. 19.
    Sownthari K, Suthanthiraraj SA (2013) Synthesis and characterization of an electrolyte system based on a biodegradable polymer. Express Polym Lett 7:495–504. doi: 10.3144/expresspolymlett.2013.46 CrossRefGoogle Scholar
  20. 20.
    Polu AR, Kumar R, Joshi GM (2014) Effect of zinc salt on transport, structural, and thermal properties of PEG-based polymer electrolytes for battery application. Ionics 20:675–679. doi: 10.1007/s11581-013-1024-9 CrossRefGoogle Scholar
  21. 21.
    Amir S, Mohamed NS, Subban RHY (2013) Ionic conductivity studies on PEMA/PVC-NH4I polymer electrolytes. Int J Mater Eng Innov 4:281–290CrossRefGoogle Scholar
  22. 22.
    Ramesh S, Liew C-W (2013) Dielectric and FTIR studies on blending of [xPMMA-(1-x) PVC] with LiTFSI. Measurement 46:1650–1656CrossRefGoogle Scholar
  23. 23.
    MacCallum JR, Vincent CA (eds) (1987) Polymer electrolyte review - I & II. Elsevier, LondonGoogle Scholar
  24. 24.
    Kremer F, Schonhals A (eds) (2003) Broad band dielectric spectroscopy. Springer-Verlag Berlin Heidelberg, New YorkGoogle Scholar
  25. 25.
    Shukur MF, Ibrahim FM, Majid NA, Ithnin R, Kadir MFZ (2013) Electrical analysis of amorphous corn starch-based polymer electrolyte membranes doped with LiI. Phys Scr 88:1–9. doi: 10.1088/0031-8949/88/02/025601 CrossRefGoogle Scholar
  26. 26.
    Ravi M, Song S, Gu K, Tang J, Zhang Z (2015) Electrical properties of biodegradable poly(ε-caprolactone): lithium thiocyanate complexed polymer electrolyte films. Mater Sci Eng B. doi: 10.1016/j.mseb.2015.02.003 Google Scholar
  27. 27.
    Polu AR, Kumar R (2011) AC impedance and dielectric spectroscopic studies of Mg2+ ion conducting PVA-PEG blended polymer electrolytes. Bull Mater Sci 34:1063–1067CrossRefGoogle Scholar
  28. 28.
    Khiar ASA, Mat Radzi S, Abd Razak N (2013) Conductivity and dielectric behavior studies of LiCF3SO3 dissociation in L-chitosan/PMMA-based polymer electrolytes. Malays J Fundam Appl Sci 9:46–50Google Scholar
  29. 29.
    Tripathi SK, Gupta A, Kumari M (2012) Studies on electrical conductivity and dielectric behavior of PVdF-HFP-PMMA-NaI polymer blend electrolyte. Bull Mater Sci 35:969–975CrossRefGoogle Scholar
  30. 30.
    Francis KMG, Subramanian S, Shunmugavel K, Naranappa V, Pandian SSM, Nadar SC (2016) Lithium-ion conducting blend polymer electrolyte based on PVA-PAN doped with lithium nitrate. Polym-Plast Technol Eng 55:25–35. doi: 10.1080/03602559.2015.1050523 CrossRefGoogle Scholar
  31. 31.
    Sharma P, Kanchan DK, Gondaliya N (2012) Effect of nano-filler on structural and ionic transport properties of plasticized polymer electrolyte. Open J Org Polym Mater 2:38–44. doi: 10.4236/ojopm.2012.22006 CrossRefGoogle Scholar
  32. 32.
    Aziz SB, Abidin ZHZ, Arof AK (2010) Influence of silver ion reduction on electrical modulus parameters of solid polymer electrolyte based on chitosan-silver triflate electrolyte membrane eXPRESS. Polym Lett 4:300–310. doi: 10.3144/expresspolymlett.2010.38 CrossRefGoogle Scholar
  33. 33.
    Fares S (2012) Influence of gamma-ray irradiation on optical and thermal degradation of poly(ethyl-methacrylate) (PEMA) polymer. Nat Sci 4:499–507. doi: 10.4236/ns.2012.47067 Google Scholar
  34. 34.
    Ramesh S, Liew C-W, Morris E, Durairaj R (2010) Effect of PVC on ionic conductivity, crystallographic structural, morphological and thermal characterizations in PMMA-PVC blend-based polymer electrolytes. Thermochim Acta. doi: 10.1016/j.tca.2010.08.005 Google Scholar
  35. 35.
    Ramesh S, Liew C-W (2013) Development and investigation on PMMA-PVC blend-based solid polymer electrolytes with LiTFSI as dopant salt. Polym Bull 70:1277–1288. doi: 10.1007/s00289-012-0851-6 CrossRefGoogle Scholar
  36. 36.
    Xue X, Zhang H, Zhang S (2014) Preparation of MgAl LDHs intercalated with amines and effect on thermal behavior for poly(vinyl chloride). Adv Mater Phys Chem 4:258–266. doi: 10.4236/ampc.2014.412028 CrossRefGoogle Scholar
  37. 37.
    Aouachria K, Quintard G, Massardier-Nageotte V, Belhaneche-Bensemra N (2014) The effect of di-(-2-ethyl hexyl) phtlalate (DEHP) as plasticizer on the thermal and mechanical properties of PVC/PMMA blends. Polimeros 24:428–433. doi: 10.1590/0104-1428.1588 Google Scholar
  38. 38.
    Ferriol M, Gentilhomme A, Cochez M, Oget N, Mieloszynski JL (2003) Thermal degradation of poly(methyl methacrylate) (PMMA): modelling of DTG and TG curves. Polym Degrad Stab 79:271–281CrossRefGoogle Scholar
  39. 39.
    Sim LN, Majid SR, Arof AK (2014) Effects of 1-butyl-3-methyl imidazolium trifluoromethanesulfonate ionic liquid in poly (ethyl methacrylate) / poly (vinylidenefluoride-co-hexafluoropropylene) blend based polymer electrolyte system. Electrochim Acta 123:190–197. doi: 10.1016/j.electacta.2014.01.017 CrossRefGoogle Scholar
  40. 40.
    Ramesh S, Liew C-W, Ramesh K (2011) Evaluation and investigation on the effect of ionic liquid onto PMMA-PVC gel polymer blend electrolytes. J Non-Cryst Soilds 357:2132–2138. doi: 10.1016/j.jnoncrysol.2011.03.004 CrossRefGoogle Scholar
  41. 41.
    Machado GO, Prud’homme RE, Pawlicka A (2007) Conductivity and thermal analysis studies of solid polymeric electrolytes based on plasticized hydroxyethyl cellulose. E-Polymers 115:1–9Google Scholar
  42. 42.
    Nadimicherla R, Kalla R, Muchakayala R, Guo X (2015) Effects of potassium iodide (KI) on crystallinity, thermal stability, and electrical properties of polymer blend electrolytes (PVC/PEO:KI). Solid State Ionics 278:260–267. doi: 10.1016/j.ssi.2015.07.002 CrossRefGoogle Scholar
  43. 43.
    Mishra K, Hashmi SA, Rai DK (2013) Investigations on poly(ethylene oxide) + NH4PF6 solid polymer electrolyte system. Int J Polym Mater Polym Biomater 62:663–670. doi: 10.1080/00914037.2013.769224 CrossRefGoogle Scholar
  44. 44.
    Trapa PE, Won Y-Y, Mui SC, Olivetti EA, Huang B, Sadoway DR, Mayes AM, Dallek S (2005) Rubbery graft copolymer electrolytes for solid-state, thin-film lithium batteries. J Electrochem Soc 152:A1–A5CrossRefGoogle Scholar
  45. 45.
    Mathew CM, Kesavan K, Rajendran S (2015) Structural and electrochemical analysis of PMMA based gel electrolyte membranes. Int J Electrochem 2015:1–7. doi: 10.1155/2015/494308 CrossRefGoogle Scholar
  46. 46.
    Leszczynska A, Njuguna J, Pielichowski K, Banerjee JR (2007) Polymer / montmorillonite nanocomposites with improved thermal properties. Part I. Factors influencing thermal stability and mechanisms of thermal stability improvement. Thermochim Acta 453:75–96CrossRefGoogle Scholar
  47. 47.
    Wu F, Feng T, Bai Y, Wu C, Ye L, Feng Z (2009) Preparation and characterization of solid polymer electrolytes based on PHEMO and PVDF-HFP. Solid State Ionics 180:677–680. doi: 10.1016/j.ssi.2009.03.003 CrossRefGoogle Scholar
  48. 48.
    Nippani SK, Kuchhal P, Anand G, Kambila VK (2016) Structural, thermal and conductivity studies of PAN-LiBF4 polymer electrolytes. J Eng Sci Technol 11:1595–1608Google Scholar
  49. 49.
    Ramesh S, Teh GB, Louh R-F, Hou YK, Sin PY, Yi LJ (2010) Preparation and characterization of plasticized high molecular weight PVC-based polymer electrolytes. Sadhana 35:87–95CrossRefGoogle Scholar
  50. 50.
    Lin Y, Li J, Liu K, Liu Y, Li J, Wang X (2016) Unique starch polymer electrolyte for high capacity all-solid-state lithium sulfur battery. Green Chem 18:3796. doi: 10.1039/c6g00444j CrossRefGoogle Scholar
  51. 51.
    Porcarelli L, Gerbaldi C, Bella F, Nair JR (2016) Super soft all-ethylene oxide polymer electrolyte for safe all-solid lithium batteries. Sci Rep 6:19892. doi: 10.1038/srep19892 CrossRefGoogle Scholar
  52. 52.
    Chapi S, Raghu S, Devendrappa H (2016) Enhanced electrochemical, structural, optical, thermal stability and ionic conductivity of (PEO/PVP) polymer blend electrolyte for electrochemical applications. Ionics 22:803–814. doi: 10.1007/s11581-015-1600-2 CrossRefGoogle Scholar
  53. 53.
    Baskaran R, Selvasekarapandian S, Kuwata N, Kawamura J, Hattori T (2006) Ac impedance, DSC and FT-IR investigations on (x) PVAc-(1-x) PVdF blends with LiClO4. Mater Chem Phys 98:55–61. doi: 10.1016/j.matchemphys.2005.08.063 CrossRefGoogle Scholar
  54. 54.
    Kaniappan K, Latha S (2011) Certain investigations on the formulation and characterization of polystyrene/poly(methyl methacrylate) blends. Int J ChemTech Res 3:708–717Google Scholar
  55. 55.
    Subbu C, Rajendran S, Kesavan K, Mathew CM (2015) Lithium ion conduction in PVdC-co-AN based polymer blend electrolytes doped with different lithium salts. Intern Polym Process 4:476–486CrossRefGoogle Scholar
  56. 56.
    Kolarik J, Fambri L, Slouf M, Konecny D (2005) Heterogenous polyamide 66/syndiotactic polystyrene blends: phase structure and thermal and mechanical properties. J Appl Polym Sci 96:673–684CrossRefGoogle Scholar
  57. 57.
    Bhavani S, Pavani Y, Ravi M, Kiran Kumar K, Narasimha Rao VVR (2013) Structural and electrical properties of pure and NiCl2 doped PVA polymer electrolytes. Am J Polym Sci 3:56–62. doi: 10.5923/j.ajps.20130303.04 Google Scholar
  58. 58.
    Ravi M, Pavani Y, Kiran Kumar K, Bhavani S, Sharma AK, Narasimha Rao VVR (2011) Studies on electrical and dielectric properties of PVP:KBrO4 complexed polymer electrolyte films. Mater Chem Phys 130:442–448. doi: 10.1016/j.matchemphys.2011.07.006 CrossRefGoogle Scholar
  59. 59.
    Polu AR, Rhee H-W, Kim DK (2015) New solid polymer electrolytes (PEO20-LiTDI-SN) for lithium batteries: structural, thermal and ionic conductivity studies. J Mater Sci Mater Electron. doi: 10.1007/s10854-015-3527-9 Google Scholar
  60. 60.
    bt. Mohd Noor SA, Ahmad A, bin Abd Rahman MY, Talib IA (2010) Solid polymeric electrolyte of poly(ethylene)oxide-50% epoxidized natural rubber-lithium triflate (PEO-ENR50-LiCF3SO3). Nat Sci 2:190–196. doi: 10.4236/ns.2010.23029 Google Scholar
  61. 61.
    Premilaa R, Rajendrana S, Subbua C (2016) Response of conductivity towards the concentration of lithium perchlorate salt in solid polymer electrolytes. Int Seminar Nanosci Technol-Conf Proc 3:13–24Google Scholar
  62. 62.
    Yusof YM, Majid NA, Kasmani RM, Illias HA, Kadir MFZ (2014) The effect of plasticization on conductivity and other properties of starch/chitosan blend biopolymer electrolyte incorporated with ammonium iodide. Mol Cryst Liq Cryst 603:73–88. doi: 10.1080/15421406.2014.966261 CrossRefGoogle Scholar
  63. 63.
    Dias FB, Plomp L, Veldhuis JBJ (2000) Trends in polymer electrolytes for secondary lithium batteries. J Power Sources 88:169–191CrossRefGoogle Scholar
  64. 64.
    Song M-K, Kim Y-T, Kim YT, Cho BW, Popov BN, Rhee H-W (2003) Thermally stable gel polymer electrolytes. J Electrochem Soc 150:A439–A444CrossRefGoogle Scholar
  65. 65.
    Nair JR, Chiappone A, Destro M, Jabbour L, Meligrana G, Gerbaldi C (2012) UV-induced radical photo-polymerization: a smart tool for preparing polymer electrolyte membranes for energy storage devices. Membranes 2:687–704. doi: 10.3390/membranes2040687 CrossRefGoogle Scholar
  66. 66.
    Xu JJ, Ye H, Huang J (2005) Novel zinc ion conducting polymer gel electrolytes based on ionic liquids. Electrochem Commun 7:1309–1317. doi: 10.1016/j.elecom.2005.09.011 CrossRefGoogle Scholar
  67. 67.
    Bender SF, Cretzmeyer JW, Reise TF (2002) Zinc/air batteries-button configuration. In: Linden D, Reddy TB (eds) Handbook of batteries. McGraw-Hill, New York (Chapter 13)Google Scholar
  68. 68.
    Imperiyka M, Ahmad A, Hanifah SA, Rahman MYA (2014) Preparation and characterization of polymer electrolyte of glycidyl methacrylate-methyl methacrylate-LiClO4 plasticized with ethylene carbonate. Int J Polym Sci 2014:1–7. doi: 10.1155/2014/638279 CrossRefGoogle Scholar
  69. 69.
    Leones R, Sentanin F, Rodrigues LC, Marrucho IM, Esperanca JMSS, Pawlicka A, Silva MM (2012) Investigation of polymer electrolytes based on agar and ionic liquids. Express Polym Lett 6:1007–1016. doi: 10.3144/expresspolymlett.2012.106 CrossRefGoogle Scholar
  70. 70.
    Brownson DAC, Banks CE (2014) Interpreting Electrochemistry, The handbook of graphene electrochemistry. Springer, Berlin (Chapter 2)Google Scholar
  71. 71.
    Girish Kumar G, Sampath S (2003) Electrochemical characterization of poly(vinylidenefluoride)-zinc triflate gel polymer electrolyte and its application in solid-state zinc batteries. Solid State Ionics 160:289–300. doi: 10.1016/S0167-2738(03)00209-1 CrossRefGoogle Scholar
  72. 72.
    Wen Z, Itoh T, Ichikawa Y, Kubo M, Yamamoto O (2000) Blend-based polymer electrolytes of poly(ethylene oxide) and hyperbranched poly[bis(triethylene glycol) benzoate] with terminal acetyl groups. Solid State Ionics 134:281–289CrossRefGoogle Scholar
  73. 73.
    Kumar D, Suleman M, Hashmi SA (2011) Studies on poly(vinylidene fluoride-co-hexafluoropropylene) based gel electrolyte nanocomposite for sodium-sulfur batteries. Solid State Ionics 202:45–53. doi: 10.1016/j.ssi.2011.09.001 CrossRefGoogle Scholar
  74. 74.
    Venkata Narayanan NS, Ashokraj BV, Sampath S (2010) Ambient temperature, zinc ion-conducting, binary molten electrolyte based on acetamide and zinc perchlorate: application in rechargeable zinc batteries. J Colloid Interface Sci 342:505–512. doi: 10.1016/j.jcis.2009.10.034 CrossRefGoogle Scholar
  75. 75.
    Kumar D, Hashmi SA (2010) Ion transport and ion-filler-polymer interaction in poly(methyl methacrylate)-based, sodium ion conducting, gel polymer electrolytes dispersed with silica nanoparticles. J Power Sources 195:5101–5108. doi: 10.1016/j.jpowsour.2010.02.026 CrossRefGoogle Scholar
  76. 76.
    Girish Kumar G, Sampath S (2003) Electrochemical characterization of a zinc-based gel-polymer electrolyte and its application in rechargeable batteries. J Electrochem Soc 150:A608–A615CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  1. 1.Department of EnergyUniversity of MadrasChennaiIndia

Personalised recommendations