, Volume 23, Issue 11, pp 3197–3202 | Cite as

Facile synthesis of phase-pure Sb8O11Cl2 microrods as anode materials for sodium-ion batteries with high capacity

  • Yaqin Lin
  • Wenjing Feng
  • Zhiwei Li
  • Tan Xu
  • Hailong Fei
Original Paper


Antimony oxychloride (Sb8O11Cl2) microrods with the diameter of about 100 nm are synthesized by a facial solvothermal reaction. And the material of Sb8O11Cl2 is applied as an anode material for sodium-ion batteries for the first time. It can deliver 723.4, 500.6, and 425.5 mA h g−1 after 20 cycles under current densities of 10, 30, and 50 mA g−1, respectively. Besides, the rate performance is also surprising (specific capacities of 517.4, 411.6, 247.8, and 191.2 mA h g−1 are achieved at the current densities of 30, 50, 100, and 200 mA g−1, respectively). Furthermore, the Sb8O11Cl2 electrode is of two very appropriate discharge plateaus (0.4 and 1.3 V) during sodiation/desodiation process, which is very critical for the long-term development of the sodium-ion batteries. In this work, a novel electrode material is presented, and it will encourage more researchers to explore Sb8O11Cl2 deeply due to its outstanding capacity and reversible performance.


Sb8O11Cl2 Microrods Anode material Sodium-ion batteries 



The project was supported by the National Natural Science Foundation of China (Grant no. 51204058) and the open project in Key Lab Adv. Energy Mat. Chem. (Nankai University).


  1. 1.
    Kundu D, Talaie E, Duffort V, Nazar LF (2015) The emerging chemistry of sodium ion batteries for electrochemical energy storage. Angew Chem Int Ed 54:3431–3448CrossRefGoogle Scholar
  2. 2.
    Wen Y, He K, Zhu Y, Han F, Xu Y, Matsuda I, Ishii Y, Cumings J, Wang C (2014) Expanded graphite as superior anode for sodium-ion batteries. Nat Commun 5:4033Google Scholar
  3. 3.
    Sauvage F, Laffont L, Tarascon J-M, Baudrin E (2007) Study of the insertion/deinsertion mechanism of sodium into Na0.44MnO2. Inorg Chem 46:3289–3294CrossRefGoogle Scholar
  4. 4.
    Yabuuchi N, Yoshida H, Komaba S (2012) Crystal structures and electrode performance of alpha-NaFeO2 for rechargeable sodium batteries. Electrochemistry 80:716–719CrossRefGoogle Scholar
  5. 5.
    Komaba S, Takei C, Nakayama T, Ogata A, Yabuuchi N (2010) Electrochemical intercalation activity of layered NaCrO2 vs. LiCrO2. Electrochem Commun 12:355–358CrossRefGoogle Scholar
  6. 6.
    Zhu J, Deng D (2015) Wet-chemical synthesis of phase-pure FeOF nanorods as high-capacity cathodes for sodium-ion batteries. Angew Chem Int Ed 54:3079–3083CrossRefGoogle Scholar
  7. 7.
    Xiang X, Zhang K, Chen J (2015) Recent advances and prospects of cathode materials for sodium-ion batteries. Adv Mater 27:5343–5364CrossRefGoogle Scholar
  8. 8.
    Yabuuchi N, Kubota K, Dahbi M, Komaba S (2014) Research development on sodium-ion batteries. Chem Rev 114:11636–11682CrossRefGoogle Scholar
  9. 9.
    Kang H, Liu Y, Cao K, Zhao Y, Jiao L, Wang Y, Yuan H (2015) Update on anode materials for Na-ion batteries. J Mater Chem A 3:17899–17913CrossRefGoogle Scholar
  10. 10.
    Kim Y, Ha KH, Oh SM, Lee KT (2014) High-capacity anode materials for sodium-ion batteries. Chem Eur J 20:11980–11992CrossRefGoogle Scholar
  11. 11.
    Zhou XL, Zhong YR, Yang M, Hu M, Wei JP, Zhou Z (2014) Sb nanoparticles decorated N-rich carbon nanosheets as anode materials for sodium ion batteries with superior rate cacapability and long cycling stability. Chem Commun 50:12888–12891CrossRefGoogle Scholar
  12. 12.
    Walter M, Doswald S, Kovalenko MV (2016) Inexpensive colloidal SnSb nanoalloys as efficient anode materials for lithium- and sodium-ion batteries. J Mater Chem A 4:7053–7059CrossRefGoogle Scholar
  13. 13.
    Li L, Seng KH, Li D, Xia Y, Liu HK, Guo Z (2014) SnSb@carbon nanocable anchored on graphene sheets for sodium ion batteries. Nano Res 7:1466–1476CrossRefGoogle Scholar
  14. 14.
    Baggetto L, Hah HY, Johnson CE, Bridges CA, Johnson JA, Veith GM (2014) The reaction mechanism of FeSb2 as anode for sodium-ion batteries. Phys Chem Chem Phys 16:9538–9545Google Scholar
  15. 15.
    Wang L, Wang C, Zhang N, Li F, Cheng F, Chen J (2017) High anode performance of in situ formed Cu2Sb nanoparticles integrated on cu foil via replacement reaction for sodium-ion batteries. ACS Energy Lett 2:256–262CrossRefGoogle Scholar
  16. 16.
    Ding YL, Wu C, Kopold P, van Aken PA, Maier J, Yu Y (2015) Graphene-protected 3D Sb-based anodes fabricated via electrostatic assembly and confinement replacement for enhanced lithium and sodium storage. Small 11:6026–6035CrossRefGoogle Scholar
  17. 17.
    Hu M, Jiang Y, Sun W, Wang H, Jin C, Yan M (2014) Reversible conversion-alloying of Sb2O3 as a high-capacity, high-rate, and durable anode for sodium ion batteries. ACS Appl Mater Interf 6:19449–19455Google Scholar
  18. 18.
    Hou H, Jing M, Huang Z, Yang Y, Zhang Y, Chen J, Wu Z, Ji X (2015) One-dimensional rod-like Sb2S3-based anode for high-performance sodium-ion batteries. ACS Appl Mater Interf 7:19362–19369Google Scholar
  19. 19.
    Zhu Y, Nie P, Shen L, Dong S, Sheng Q, Li H, Luo H, Zhang X (2015) High rate capability and superior cycle stability of a flower-like Sb2S3 anode for high-capacity sodium ion batteries. Nano 7:3309–3315Google Scholar
  20. 20.
    Liu S, Feng J, Bian X, Liu J, Xu H (2016) Advanced arrayed bismuth nanorod bundle anode for sodium-ion batteries. J Mater Chem A 4:10098–10104CrossRefGoogle Scholar
  21. 21.
    Su D, Dou S, Wang G (2015) Bismuth: a new anode for the Na-ion battery. Nano Energy 12:88–95CrossRefGoogle Scholar
  22. 22.
    Yang F, Yu F, Zhang Z, Zhang K, Lai Y, Li J (2016) Bismuth nanoparticles embedded in carbon spheres as anode materials for sodium/lithium-ion batteries. Chem Eur J 22:2333–2338CrossRefGoogle Scholar
  23. 23.
    Sottmann J, Herrmann M, Vajeeston P, Hu Y, Ruud A, Drathen C, Emerich H, Fjellvåg H, Wragg DS (2016) How crystallite size controls the reaction path in nonaqueous metal ion batteries: the example of sodium bismuth alloying. Chem Mater 28:2750–2756CrossRefGoogle Scholar
  24. 24.
    Kim MK, Yu SH, Jin A, Kim J, Ko IH, Lee KS, Mun J, Sung YE (2016) Bismuth oxide as a high capacity anode material for sodium-ion batteries. Chem Commun 52:11775–11778CrossRefGoogle Scholar
  25. 25.
    Sun W, Rui X, Zhang D, Jiang Y, Sun Z, Liu H, Dou S (2016) Bismuth sulfide: a high-capacity anode for sodium-ion batteries. J Power Sources 309:135–140CrossRefGoogle Scholar
  26. 26.
    Yang W, Wang H, Liu T, Gao L (2016) A Bi2S3@CNT nanocomposite as anode material for sodium ion batteries. Mater Lett 167:102–105CrossRefGoogle Scholar
  27. 27.
    Fei H, Feng Z, Liu X (2014) Novel sodium bismuth sulfide nanostructures: a promising anode materials for sodium-ion batteries with high capacity. Ionics 21:1967–1972CrossRefGoogle Scholar
  28. 28.
    Zhang Y, Lu S, Wang M-Q, Niu Y, Liu S, Li Y, Wu X, Bao S-J, Xu M (2016) Bismuth oxychloride ultrathin nanoplates as an anode material for sodium-ion batteries. Mater Lett 178:44–47CrossRefGoogle Scholar
  29. 29.
    Zhang K, Liu C, Huang F, Zheng C, Wang W (2006) Study of the electronic structure and photocatalytic activity of the BiOCl photocatalyst. Appl Catal B Environ 68:125–129CrossRefGoogle Scholar
  30. 30.
    Zhao W, Li CM (2017) Mesh-structured N-doped graphene@Sb2Se3 hybrids as an anode for large capacity sodium-ion batteries. J Colloid Interf Sci 488:356–364CrossRefGoogle Scholar
  31. 31.
    Sun CS, Zhang Y, Zhang XJ, Zhou Z (2010) Structural and electrochemical properties of Cl-doped LiFePO4/C. J Power Sources 195:3680–3683Google Scholar
  32. 32.
    Wang Y, Fei HL (2013) Improvement of a novel anode material TeO2 by chlorine doping. Ionics 19:771–776CrossRefGoogle Scholar
  33. 33.
    Yang JQ, Zhou XL, Wu DH, Zhao XD, Zhou Z (2017) S-doped N-rich carbon nanosheets with expanded interlayer distance as anode materials for sodium-ion batteries. Adv Mater 29:1604108CrossRefGoogle Scholar
  34. 34.
    Yu DY, Prikhodchenko PV, Mason CW, Batabyal SK, Gun J, Sladkevich S, Medvedev AG, Lev O (2013) High-capacity antimony sulphide nanoparticle-decorated graphene composite as anode for sodium-ion batteries. Nat Commun 4:2922Google Scholar
  35. 35.
    Ye L, Wang L, Xie H, Su Y, Jin X, Zhang C (2015) Two-dimensional layered BiOX (X=Cl, Br) compounds as anode materials for lithium-ion batteries. Energy Technol-Ger 3:1115–1120Google Scholar
  36. 36.
    Li KF, Liu H, Wang GX (2014) Sb2O3 nanowires as anode material for sodium-ion battery. Arab J Sci Eng 39:6589–6593Google Scholar
  37. 37.
    Li DS, Dong YN, Ma JQ et al (2016) One-step microwave-assisted synthesis of Sb2O3/reduced graphene oxide composites as advanced anode materials for sodium-ion batteries. Ceram Int 42:15634–15642Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  • Yaqin Lin
    • 1
  • Wenjing Feng
    • 1
  • Zhiwei Li
    • 1
  • Tan Xu
    • 1
  • Hailong Fei
    • 1
    • 2
  1. 1.State Key Lab Photocatalysis Energy and EnvironmFuzhou UniversityUniversity Town FuzhouPeople’s Republic of China
  2. 2.Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education)Nankai UniversityTianjinPeople’s Republic of China

Personalised recommendations