Advertisement

Ionics

, Volume 23, Issue 11, pp 3125–3135 | Cite as

Effect of hydrolysis degree and mass molecular weight on the structure and properties of PVA films

Original Paper

Abstract

In this work, we aim to analyze the variation of structural, thermal, and dielectric properties of polyvinyl alcohol (PVA) films by varying the molecular weight (Mw) and the hydrolysis degree (HD). The XRD study revealed the improvement of the crystallinity degree by the increase of HD or the decrease of Mw. The DSC study showed the decrease of the molecular mobility with the increase of either the hydrolysis degree or the molecular weight. The dielectric measurements showed four dielectric processes attributed to electrode/sample polarization, α a-relaxation, α c-relaxation, and β-relaxation. The activation energy attributed to α a-relaxation and α c-relaxation, increase with the increase of the molecular weight Mw, and the decrease of HD. The Ac conductivity is well fitted to the universal Jonsher law in the frequency range where the electrode/sample polarization can be neglected.

Keywords

Relaxations Polymer electrolytes Ionic conductivities Thin films FTIR 

References

  1. 1.
    Dhawan SK, Singh N, Venkatachalam S (2002) Shielding behaviour of conducting polymer-coated fabrics in X-band, W-band and radio frequency range. Synth Met 129:261–267CrossRefGoogle Scholar
  2. 2.
    Gerard M, Chaubey A, Malhotra BD (2002) Application of conducting polymers to biosensors. Biosens Bioelectron 17:345–359CrossRefGoogle Scholar
  3. 3.
    Steffens C, Manzoli A, Francheschi E, Corazza ML, Corazza FC, Oliveira JV, Herrmann PSP (2009) Low-cost sensors developed on paper by line patterning with graphite and polyaniline coating with supercritical CO2. Synth Met 159:2329–2332CrossRefGoogle Scholar
  4. 4.
    Kim M, Lee YS, Kim YC, Choi MS, Lee JY (2011) Flexible organic light-emitting diode with a conductive polymer electrode. Synth Met 161:2318–2322CrossRefGoogle Scholar
  5. 5.
    Liu X, Ji Z, Tu D, Shang L, Liu J, Liu M, Xie C (2009) Organic nonpolar nonvolatile resistive switching in poly(3,4-ethylene-dioxythiophene): polystyrenesulfonate thin film. Org Electron 10:1191–1194CrossRefGoogle Scholar
  6. 6.
    Chao YC, Huang SY, Chen CY, Chang YF, Meng HF, Yen FW, Lin IF, Zan HW, Horng SF (2011) Highly efficient solution-processed red organic light-emitting diodes with long-side-chained triplet emitter. Synth Met 161:148–152CrossRefGoogle Scholar
  7. 7.
    Lee MS, Kang HS, Kang HS, Joo J, Epstein AJ, Lee JY (2005) Flexible all-polymer field effect transistors with optical transparency using electrically conducting polymers. Thin Solid Films 477:169–173CrossRefGoogle Scholar
  8. 8.
    Saroj AL, Singh RK (2012) Thermal, dielectric and conductivity studies on PVA/ionic liquid [EMIM][EtSO4] based polymer electrolytes. J Phys Chem Solids 73:162–168CrossRefGoogle Scholar
  9. 9.
    Islam A, Yasin T, Akhtar MJ, Imran Z, Sabir A, Sultan M, Khan SM, Jamil T (2016) Impedance spectroscopy of chitosan/poly(vinyl alcohol) films. J Solid State Electrochem 20:571–578CrossRefGoogle Scholar
  10. 10.
    Egginger M, Schwodiauer R (2012) Analysis of mobile ionic impurities in polyvinylalcohol thin films by thermal discharge current and dielectric impedance spectroscopy. AIP Adv 2:042152CrossRefGoogle Scholar
  11. 11.
    Balaji Bhargav P, Sarada BA, Sharma AK, Rao VVRN (2010) Electrical conduction and dielectric relaxation phenomena of PVA based polymer electrolyte films. Journal of Macromolecular Science, Part A: Pure and Applied Chemistry 47:131–137CrossRefGoogle Scholar
  12. 12.
    Sulaeman U, Wu X, Liu B, Yin S, Sato T (2015) Synthesis of Ag3PO4-polyvinyl alcohol hybrid microcrystal with enhanced visible light photocatalytic activity. Journal Applied Surface Science 356:226–231CrossRefGoogle Scholar
  13. 13.
    Santos AMC, Medeiros ELG, Blaker JJ, Medeiros ES (2016) Aqueous solution blow spinning of poly(vinylalcohol) micro-and nanofibers. Mater Lett 176:122–126CrossRefGoogle Scholar
  14. 14.
    Ahmad J, Deshmukh K, Hagg MB (2013) Influence of TiO2 on the chemical, mechanical, and gas separation properties of polyvinyl alcohol-titanium dioxide (PVA-TiO2) nanocomposite membranes. Int J Polym Anal Charact 18:287–296CrossRefGoogle Scholar
  15. 15.
    Rañola RAG, Santiago KS, Sevilla FB (2016) Use of array of conducting polymers for differentiation of coconut oil products. Talanta 146:75–82CrossRefGoogle Scholar
  16. 16.
    Park JS, Park JW, Ruckenstein E (2001) Thermal and dynamic mechanical analysis of PVA/MC blend hydrogels. Polymer 42:4271–4280CrossRefGoogle Scholar
  17. 17.
    Hirankumar G, Selvasekarapandian S, Kuwata N, Kawamura J, Hattori T (2005) Thermal, electrical and optical studies on the poly(vinyl alcohol) based polymer electrolytes. J Power Sources 144:262–267CrossRefGoogle Scholar
  18. 18.
    Reddy CVS, Han X, Zhu QY, Mai LQ, Chen W (2006) Dielectric spectroscopy studies on (PVP + PVA) polyblend film. Journal Microelectronic Engineering 8:281–285CrossRefGoogle Scholar
  19. 19.
    Cruz LG, Coterillo CC, Iniesta J, Montiel V, Irabien Á (2016) Chitosan:poly (vinyl) alcohol composite alkaline membrane incorporating organic ionomers and layered silicate materials into a PEM electrochemical reactor. J Membr Sci 498:395–407CrossRefGoogle Scholar
  20. 20.
    Fattoum A, Arous M, Pedicini R, Carbone A, Charnay C (2015) Conductivity and dielectric relaxation in crosslinked PVA by oxalic and citric acids. Polymer Science, Ser A 57:321–329CrossRefGoogle Scholar
  21. 21.
    Jayasekara R, Harding I, Bowater I, Christie GBY, Lonergan GT (2004) Preparation, surface modification and characterisation of solution cast starch PVA blended films. Polym Test 23:17–27CrossRefGoogle Scholar
  22. 22.
    Fattoum A, Arous M (2014) Conductivity and dielectric relaxation in various polyvinyl alcohol/ammonium salt composites. Polymer Science, Ser. A 56:907–916CrossRefGoogle Scholar
  23. 23.
    Ahmed MA, Khafagy RM, Bishay ST, Saleh NM (2013) Effective dye removal and water purification using the electric and magnetic Zn0.5Co0.5Al0.5Fe1.46La0.04O4/polymer core–shell nanocomposites. J Alloys Compd 578:121–131CrossRefGoogle Scholar
  24. 24.
    Kozlov M, Mccarthy TJ (2004) Adsorption of poly(vinyl alcohol) from water to a hydrophobic surface: effects of molecular weight, degree of hydrolysis, salt, and temperature. Langmuir 20:9170–9176CrossRefGoogle Scholar
  25. 25.
    Jenkins MJ, Harrison KL (2006) The effect of molecular weight on the crystallization kinetics of polycaprolactone. Polym Adv Technol 17:474–478CrossRefGoogle Scholar
  26. 26.
    Emmanuel K, Cheng C, Erigene B, Mondal AN, Hossain MM, Khan MI et al (2016) Imidazolium functionalized anion exchange membrane blended with PVA for acid recovery via diffusion dialysis process. J Membr Sci 497:209–215CrossRefGoogle Scholar
  27. 27.
    Abdelaziz M, Ghannam MM (2010) Influence of titanium chloride addition on the optical and dielectric properties of PVA films. Physica B 405:958–964CrossRefGoogle Scholar
  28. 28.
    Herman HS, Sadahira CM, Souza AN, Mansur AAP (2008) FTIR spectroscopy characterization of poly (vinyl alcohol) hydrogel with different hydrolysis degree and chemically crosslinked with glutaraldehyde. Mater Sci Eng C 28:539–548CrossRefGoogle Scholar
  29. 29.
    Lewandowska K (2009) Miscibility and thermal stability of poly(vinyl alcohol)/chitosan mixtures. Thermochim Acta 493:42–48CrossRefGoogle Scholar
  30. 30.
    Singhal A, Kaur M, Dubey KA, Bhardwaj YK, Jain D, Pillai CGS, Tyagi AK (2012) Polyvinyl alcohol–In2O3 nanocomposite films: synthesis, characterization and gas sensing properties. RSC Adv 2:7180–7189CrossRefGoogle Scholar
  31. 31.
    Abdel-Baset TA, Hassen A (2016) Dielectric relaxation analysis and Ac conductivity of polyvinyl alcohol/polyacrylonitrile film. Physica B 499:24–28CrossRefGoogle Scholar
  32. 32.
    El Sayed AM (2014) Synthesis and controlling the optical and dielectric properties of CMC/PVA blend via c-rays irradiation. Nucl Inst Methods Phys Res B 321:41–48CrossRefGoogle Scholar
  33. 33.
    Md JU, Chaudhuri B, Pramanik K, Middya TR, Chaudhuri B (2012) Black tea leaf extract derived Ag nanoparticle-PVA composite film: structural and dielectric properties. Mater Sci Eng B 177:1741–1747CrossRefGoogle Scholar
  34. 34.
    El-Shahawy MA, Elkholy MM (1994) Dielectric properties of cobalt-doped poly(vinyl alcohol). Journal of European Polymer 30:259–263CrossRefGoogle Scholar
  35. 35.
    Buruiana LI, Avram E, Musteata VE, Filimon A (2016) Optical and electronic properties of quaternized polysulfone/polyvinylalcohol blends in relation to structure of the polymers. Mater Chem Phys 177:442–454Google Scholar
  36. 36.
    Abd El-kader FH, Osman WH, Mahmoud KH, Basha MAF (2008) Dielectric investigations and ac conductivity of polyvinyl alcohol films doped with europium and terbium chloride. Physica B 403:3473–3484CrossRefGoogle Scholar
  37. 37.
    Awadhia A, Patel SK, Agrawal SL (2006) Dielectric investigations in PVA based gel electrolytes. Prog Cryst Growth Charact Mater 52:61–68CrossRefGoogle Scholar
  38. 38.
    Ladhar A, Arous M, Kaddami H, Raihane M, Kallel A, Graça MPF, Costa LC (2014) Molecular dynamics of nanocomposites natural rubber/cellulose nanowhiskers investigated by impedance spectroscopy. J Mol Liq 196:187–191CrossRefGoogle Scholar
  39. 39.
    De La Rosa A, Heux L, Cavaille JY (2001) Secondary relaxations in poly(allyl alcohol), PAA, and poly(vinyl alcohol), PVA. II. Dielectric relaxations compared with dielectric behaviour of amorphous dried and hydrated cellulose and dextran. Journal Polymer 42:5371–5379CrossRefGoogle Scholar
  40. 40.
    Gun’ko VM, Pissis P, Spanoudaki A, Zarko VI, Nychiporuk YM et al (2007) Relaxation phenomena in poly(vinyl alcohol)/fumed silica affected by interfacial water. J Colloid Interface Sci 312:201–213CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  1. 1.Laboratory of Composite Materials, Ceramics and Polymers, Physics Department, Science FacultyUniversity of SfaxSfax (BP 1171)Tunisia
  2. 2.Research Unit, Materials Environment and Energy (UR14ES26), Science Faculty Sidi Ahmed ZarougGafsa UniversityGafsaTunisia

Personalised recommendations