Ionics

, Volume 23, Issue 11, pp 2969–2980 | Cite as

Facile synthesis of spinel LiNi0.5Mn1.5O4 cathode materials using M2(OH)2(C8H4O4)-class metal-organic frameworks

Original Paper
  • 260 Downloads

Abstract

Various synthesis methods have been developed to synthesize mixed metal oxide cathode materials, whereas the scale-up production is hindered by issues of complicated processes, high cost, and inhomogeneity of the prepared materials. Herein, a facile, low-cost, and scalable synthesis route using M2(OH)2(C8H4O4)-class metal-organic frameworks (PTA-based MOFs) as precursors has been explored to synthesize LiNi0.5Mn1.5O4 materials with homogeneity and high crystallinity. Bimetallic PTA-based MOFs were first prepared by the reaction of metal acetates and PTA in the aqueous solution at room temperature. After thermal treatment of PTA-based MOFs, bimetal oxides (Ni-Mn-O) with the inherited morphology of porous nanoplates consisting of 20–30-nm nanoparticles were obtained. The LiNi0.5Mn1.5O4 materials prepared by calcination of Ni-Mn-O with lithium salts exhibit excellent rate capability and cycling performance, delivering a specific capacity of 115.9 mAh g−1 at 20 C and retaining 83.8% after 500 cycles. This work opens a new way for fabrication of PTA-based MOFs and mixed metal oxides as cathode materials for lithium-ion batteries.

Keywords

Cathode materials LiNi0.5Mn1.5O4 Metal-organic frameworks PTA 

Notes

Acknowledgements

This work was supported by the National High Technology Research and Development Program of China (Grant No. 2013AA050901).

Supplementary material

11581_2017_2102_MOESM1_ESM.doc (1.4 mb)
ESM 1 (DOC 1475 kb)

References

  1. 1.
    Cai Y, Huang SZ, She FS et al (2016) Facile synthesis of well-shaped spinel LiNi0.5Mn1.5O4 nanoparticles as cathode materials for lithium ion batteries. RSC Adv 6(4):2785–2792. doi: 10.1039/c5ra21723g CrossRefGoogle Scholar
  2. 2.
    Yi TF, Xie Y, Zhu YR et al (2012) High rate micron-sized niobium-doped LiMn1.5Ni0.5O4 as ultra high power positive-electrode material for lithium-ion batteries. J Power Sources 211:59–65. doi: 10.1016/j.jpowsour. 2012.03.095 CrossRefGoogle Scholar
  3. 3.
    Cho HM, Chen MV, MacRae AC et al (2015) Effect of surface modification on nano-structured LiMn1.5Ni0.5O4 spinel materials. ACS Appl Mater. Interfaces 7(30):16231–16239. doi: 10.1021/acsami.5b01392 Google Scholar
  4. 4.
    Wang HL, Tan TA, Yang P et al (2011) High-rate performances of the Ru-doped spinel LiNi0.5Mn1.5O4: effects of doping and particle size. J Phys Chem C 115(13):6102–6110. doi: 10.1021/jp110746w
  5. 5.
    Liu GQ, Wen L, Wang X et al (2011) Effect of the impurity LixNi1−xO on the electrochemical properties of 5V cathode material LiMn1.5Ni0.5O4. J Alloys Compd 509(38):9377–9381. doi: 10.1016/j.jallcom. 2011.07.045 CrossRefGoogle Scholar
  6. 6.
    Zhong GB, Wang YY, Yu YQ et al (2012) Electrochemical investigations of the LiNi0.45M0.10Mn1.45O4 (M=Fe, Co, Cr) 5V cathode materials for lithium ion batteries. J Power Sources 205:385–393. doi: 10.1016/j.jpowsour. 2011.12.037 CrossRefGoogle Scholar
  7. 7.
    Sun P, Ma Y, Zhai T et al (2016) High performance LiMn1.5Ni0.5O4 cathode by Al-coating and Al3+-doping through a physical vapor deposition method. Electrochim Acta 191:237–246. doi: 10.1016/j.electacta. 2016.01.087 CrossRefGoogle Scholar
  8. 8.
    Xu J, Xia Q, Chen F et al (2016) Facilely solving cathode/electrolyte interfacial issue for high-voltage lithium ion batteries by constructing an effective solid electrolyte interface film. Electrochim Acta 191:687–694. doi: 10.1016/j.electacta. 2016.01.138 CrossRefGoogle Scholar
  9. 9.
    Wang Y, Yang G, Yang Z et al (2013) High power and capacity of LiMn1.5Ni0.5O4 thin films cathodes prepared by pulsed laser deposition. Electrochim Acta 102:416–422. doi: 10.1016/j.electacta. 2013.04.018 CrossRefGoogle Scholar
  10. 10.
    Chen ZX, Qiu S, Cao YL et al (2012) Surface-oriented and nanoflake-stacked LiMn1.5Ni0.5O4 spinel for high-rate and long-cycle-life lithium ion batteries. J Mater Chem 22(34):17768–17772. doi: 10.1039/c2jm33338d CrossRefGoogle Scholar
  11. 11.
    Choi SH, Hong YJ, Kang YC (2013) Yolk-shelled cathode materials with extremely high electrochemical performances prepared by spray pyrolysis. Nano 5(17):7867–7871. doi: 10.1039/c3nr01675g Google Scholar
  12. 12.
    Cabana J, Casas-Cabanas M, Omenya FO et al (2012) Composition-structure relationships in the Li-ion battery electrode material LiNi0.5Mn1.5O4. Chem Mater 24:2952–2964. doi: 10.1021/cm301148d CrossRefGoogle Scholar
  13. 13.
    Song J, Shin DW, Lu Y et al (2012) Role of oxygen vacancies on the performance of LiNi0.5–xMn1.5+xO4 (x= 0, 0.05, and 0.08) spinel cathodes for lithium-ion batteries. Chem Mater 24(15):3101–3109. doi: 10.1021/cm301825h CrossRefGoogle Scholar
  14. 14.
    Feng XY, Shen C, Fang X et al (2011) Synthesis of LiMn1.5Ni0.5O4 by solid-state reaction with improved electrochemical performance. J Alloys Compd 509(8):3623–3626. doi: 10.1016/j.jallcom. 2010.12.116 CrossRefGoogle Scholar
  15. 15.
    Lin Y, Yang Y, Yu R et al (2014) Enhanced electrochemical performances of LiMn1.5Ni0.5O4 by surface modification with superconducting YBa2Cu3O7. J Power Sources 259:188–194. doi: 10.1016/j.jpowsour. 2014.02.093 CrossRefGoogle Scholar
  16. 16.
    Hao X, Austin MH, Bartlett BM (2012) Two-step hydrothermal synthesis of submicron Li1+xNi0.5Mn1.5O4−δ for lithium-ion battery cathodes (x = 0.02, δ = 0.12). Dalton Trans 41(26):8067–8076. doi: 10.1039/c2dt30351e CrossRefGoogle Scholar
  17. 17.
    Sun Y, Yang Y, Zhao X et al (2011) Synthesis and electrochemical characterization of LiMn1.5Ni0.5O4 by one-step precipitation method with ammonium carbonate as precipitating agent. Electrochim Acta 56(17):5934–5939. doi: 10.1016/j.electacta. 2011.04.113 CrossRefGoogle Scholar
  18. 18.
    Yang S, Chen J, Liu Y et al (2014) Preparing LiMn1.5Ni0.5O4 nanoplates with superior properties in lithium-ion batteries using bimetal-organic coordination-polymers as precursors. J Mater Chem A 2(24):9322–9330. doi: 10.1039/c4ta01147c CrossRefGoogle Scholar
  19. 19.
    Wang DP, Belharouak I, Koenig GM et al (2011) Growth mechanism of Ni0.3Mn0.7CO3 precursor for high capacity Li-ion battery cathodes. J Mater Chem 21(25):9290. doi: 10.1039/c1jm11077b CrossRefGoogle Scholar
  20. 20.
    Saha D, Wei Z, Deng S (2009) Hydrogen adsorption equilibrium and kinetics in metal–organic framework (MOF-5) synthesized with DEF approach. Sep Purif Technol 64(3):280–287. doi: 10.1016/j.seppur. 2008.10.022 CrossRefGoogle Scholar
  21. 21.
    Ke FS, Wu YS, Deng H (2015) Metal-organic frameworks for lithium ion batteries and supercapacitors. J Solid State Chem 223:109–121. doi: 10.1016/j.jssc. 2014.07.008 CrossRefGoogle Scholar
  22. 22.
    Nguyen HGT, Schweitzer NM, Chang CY et al (2014) Vanadium-node-functionalized UiO-66: a thermally stable MOF-supported catalyst for the gas-phase oxidative dehydrogenation of cyclohexene. ACS Catal 4(8):2496–2500. doi: 10.1021/cs5001448 CrossRefGoogle Scholar
  23. 23.
    Sun X, Mura M, Jonkman HT et al (2012) Fabrication of a complex two-dimensional adenine–perylene-3, 4, 9, 10-tetracarboxylic dianhydride chiral nanoarchitecture through molecular self-assembly. J Phys Chem C 116(3):2493–2499. doi: 10.1021/jp2095054 CrossRefGoogle Scholar
  24. 24.
    Hu L, Chen Q (2014) Hollow/porous nanostructures derived from nanoscale metal-organic frameworks towards high performance anodes for lithium-ion batteries. Nano 6(3):1236–1257. doi: 10.1039/c3nr05192g Google Scholar
  25. 25.
    Zhang Z, Chen Y, He S et al (2014) Hierarchical Zn/Ni-MOF-2 nanosheet-assembled hollow nanocubes for multicomponent catalytic reactions. Angew Chem Int Ed Engl 53(46):12517–12521. doi: 10.1002/anie.201406484 Google Scholar
  26. 26.
    Wu RB, Qian XK, Zhou K et al (2014) Porous spinel ZnxCo3-xO4 hollow polyhedra templated for high-rate lithium-ion batteries. ACS Nano 8(6):6297–6303CrossRefGoogle Scholar
  27. 27.
    Wang L, Zhang H, Mou C et al (2015) Dicarboxylate CaC8H4O4 as a high-performance anode for Li-ion batteries. Nano Res 8(2):523–532. doi: 10.1007/s12274-014-0666-x CrossRefGoogle Scholar
  28. 28.
    Gou L, Hao LM, Shi YX et al (2014) One-pot synthesis of a metal–organic framework as an anode for Li-ion batteries with improved capacity and cycling stability. J Solid State Chem 210(1):121–124. doi: 10.1016/j.jssc. 2013.11.014 CrossRefGoogle Scholar
  29. 29.
    Geng B, Zhan F, Fang C et al (2008) A facile coordination compound precursor route to controlled synthesis of Co3O4 nanostructures and their room-temperature gas sensing properties. J Mater Chem 18(41):4977. doi: 10.1039/b805378b CrossRefGoogle Scholar
  30. 30.
    Zhu J, Gao Q (2009) Mesoporous MCo2O4 (M=Cu, Mn and Ni) spinels: structural replication, characterization and catalytic application in CO oxidation. Microporous Mesoporous Mater 124(1–3):144–152. doi: 10.1016/j.micromeso. 2009.05.003 CrossRefGoogle Scholar
  31. 31.
    Lu H, Zhu S (2013) Interfacial synthesis of free-standing metal-organic framework membranes. Eur J Inorg Chem:1294–1300. doi: 10.1002/ejic.201201009
  32. 32.
    Zhang K, Han X, Hu Z et al (2015) Nanostructured Mn-based oxides for electrochemical energy storage and conversion. Chem Soc Rev 44(3):699–728. doi: 10.1039/c4cs00218k CrossRefGoogle Scholar
  33. 33.
    Lu ZH, Dahn JR (2002) Understanding the anomalous capacity of Li/Li [NixLi(1/3−2x/3)Mn(2/3−x/3)]O2 cells using in situ X-ray diffraction and electrochemical studies. J Electrochem Soc 149(7):A815–A822. doi: 10.1149/1.1480014 CrossRefGoogle Scholar
  34. 34.
    Sibille R, Mesbah A, Mazet T et al (2012) Magnetic measurements and neutron diffraction study of the layered hybrid compounds Mn (C8H4O4)(H2O)2 and Mn2(OH)2(C8H4O4). J Solid State Chem 186:134–141. doi: 10.1016/j.jssc. 2011.12.009 CrossRefGoogle Scholar
  35. 35.
    Wang Z, Liu Y, Gao C et al (2015) A porous Co (OH)2 material derived from a MOF template and its superior energy storage performance for supercapacitors. J Mater Chem A 3(41):20658–20663. doi: 10.1039/c5ta04663g CrossRefGoogle Scholar
  36. 36.
    He S, Li Z, Wang J et al (2016) MOF-derived NixCo1−x (OH)2 composite microspheres for high-performance supercapacitors. RSC Adv 6(55):49478–49486. doi: 10.1039/c6ra03992h CrossRefGoogle Scholar
  37. 37.
    Mesbah A, Malaman B, Mazet T et al (2010) Location of metallic elements in (Co1−xFex)2(OH)2(C8H4O4): use of MAD, neutron diffraction and 57Fe Mössbauer spectroscopy. Cryst Eng Comm 12(10):3126–3131. doi: 10.1039/b926144c CrossRefGoogle Scholar
  38. 38.
    Williams GR, Crowder J, Burley JC et al (2012) The selective intercalation of organic carboxylates and sulfonates into hydroxy double salts. J Mater Chem 22(27):13600–13611. doi: 10.1039/c2jm32257a CrossRefGoogle Scholar
  39. 39.
    Miles DO, Jiang D, Burrows AD et al (2013) Conformal transformation of [Co (bdc)(DMF)] (Co-MOF-71, bdc = 1, 4-benzenedicarboxylate, DMF = NN-dimethylformamide) into porous electrochemically active cobalt hydroxide. Electrochem Commun 27:9–13. doi: 10.1016/j.elecom. 2012.10.039 CrossRefGoogle Scholar
  40. 40.
    Diring S, Furukawa S, Takashima Y et al (2010) Controlled multiscale synthesis of porous coordination polymer in nano/micro regimes. Chem Mater 22:4531–4538. doi: 10.1021/cm101778g CrossRefGoogle Scholar
  41. 41.
    Oh JM, Hwang SH, Choy JH (2002) The effect of synthetic conditions on tailoring the size of hydrotalcite particles. Solid State Ionics 151:285–291CrossRefGoogle Scholar
  42. 42.
    Wang J, Yu YY, Wu BH et al (2015) A homogeneous intergrown material of LiMn2O4 and LiNi0.5Mn1.5O4 as a cathode material for lithium-ion batteries. J Mater Chem A 3(5):2353–2360. doi: 10.1039/c4ta05311g CrossRefGoogle Scholar
  43. 43.
    Guzel F, Yakut H, Topal G (2008) Determination of kinetic and equilibrium parameters of the batch adsorption of Mn (II), Co (II), Ni (II) and Cu (II) from aqueous solution by black carrot (Daucus carota L.) residues. J Hazard Mater 153(3):1275–1287. doi: 10.1016/j.jhazmat. 2007.09.087 CrossRefGoogle Scholar
  44. 44.
    Amdouni N, Zaghib K, Gendron F et al (2006) Structure and insertion properties of disordered and ordered LiNi0.5Mn1.5O4 spinels prepared by wet chemistry. Ionics 12(2):117–126. doi: 10.1007/s11581-006-0021-7 CrossRefGoogle Scholar
  45. 45.
    Dong L, Chu Y, Sun W (2008) Controllable synthesis of nickel hydroxide and porous nickel oxide nanostructures with different morphologies. Chemistry 14(16):5064–5072. doi: 10.1002/chem.200701627 CrossRefGoogle Scholar
  46. 46.
    Chong J, Xun SD, Song XY et al (2013) Surface stabilized LiNi0.5Mn1.5O4 cathode materials with high-rate capability and long cycle life for lithium ion batteries. Nano Energy 2(2):283–293. doi: 10.1016/j.nanoen. 2012.09.013 CrossRefGoogle Scholar
  47. 47.
    Gu X, Li X, Xu L et al (2012) Synthesis of spinel LiNixMn2-xO4 (x=0, 0.1, 0.16) and their high rate charge-discharge performances. Int J Electrochem Sci 7:2504–2512Google Scholar
  48. 48.
    Fang H, Li L, Li G (2007) A low-temperature reaction route to high rate and high capacity LiNi0.5Mn1.5O4. J Power Sources 167(1):223–227. doi: 10.1016/j.jpowsour. 2007.02.015 CrossRefGoogle Scholar
  49. 49.
    Raja MW, Mahanty S, Basu RN (2009) Multi-faceted highly crystalline LiMn2O4 and LiNi0.5Mn1.5O4 cathodes synthesized by a novel carbon exo-templating method. Solid State Ionics 180(23–25):1261–1266. doi: 10.1016/j.ssi. 2009.06.016 CrossRefGoogle Scholar
  50. 50.
    Hirayama M, Ido H, Kim K et al (2010) Dynamic structural changes at LiMn2O4 electrolyte interface during lithium battery reaction. J Am Chem Soc 132(43):15268. doi: 10.1021/ja105389t CrossRefGoogle Scholar
  51. 51.
    Xiao Y, Xiang W, Zhang J et al (2016) Synthesis of spinel LiNi0.5Mn1.5O4 as advanced cathode via a modified oxalate co-precipitation method. Ionics 22(8):1361–1368. doi: 10.1007/s11581-016-1659-4 CrossRefGoogle Scholar
  52. 52.
    Pan J, Deng J, Yao Q et al (2015) Novel LiNi0.5Mn1.5O4 porous microellipsoids as high-performance cathode materials for lithium ion batteries. J Power Sources 288:353–358. doi: 10.1016/j.jpowsour. 2015.04.133 CrossRefGoogle Scholar
  53. 53.
    Zhang X, Cheng F, Yang J et al (2013) LiNi0.5Mn1.5O4 porous nanorods as high-rate and long-life cathodes for Li-ion batteries. Nano Lett 13(6):2822–2825. doi: 10.1021/nl401072x CrossRefGoogle Scholar
  54. 54.
    Qian YX, Deng YF, Shi ZC et al (2013) Sub-micrometer-sized LiNi0.5Mn1.5O4 spheres as high rate cathode materials for long-life lithium ion batteries. Electrochem Commun 27:92–95. doi: 10.1016/j.elecom. 2012.11.004 CrossRefGoogle Scholar
  55. 55.
    Zhu X, Li X, Zhu Y et al (2014) Porous LiNi0.5Mn1.5O4 microspheres with different pore conditions: preparation and application as cathode materials for lithium-ion batteries. J Power Sources 261:93–100. doi: 10.1016/j.jpowsour. 2014.03.047 CrossRefGoogle Scholar
  56. 56.
    Kunduraci M, Al-Sharab JF, Amatucci GG (2006) High-power nanostructured LiMn2-xNixO4 high-voltage lithium-ion battery electrode materials: electrochemical impact of electronic conductivity and morphology. Chem Mater 18:3585–3592. doi: 10.1021/cm060729s CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  1. 1.Advanced Rechargeable Battery LaboratoryDalian Institute of Chemical Physics, Chinese Academy of SciencesDalianChina
  2. 2.University of Chinese Academy of SciencesBeijingChina

Personalised recommendations