Ionics

, Volume 23, Issue 11, pp 3097–3109 | Cite as

Influence of plasticizer on ionic conductivity of PVC-PBMA polymer electrolytes

  • R. Arunkumar
  • Ravi Shanker Babu
  • M. Usha Rani
  • S. Rajendran
Original Paper
  • 192 Downloads

Abstract

Plasticized polymer electrolytes comprising of ethylene carbonate as the plasticizing agent in poly (vinyl chloride) [PVC]–poly (butyl methacrylate) [PBMA] blended polymer electrolytes were prepared by solution casting technique. Complex formation, structural elucidation, conductivity, dielectric parameters (Ɛ′, Ɛ″, M′, and M″), thermal stability, and surface morphology are brought out from FTIR, XRD, ac impedance analysis, dielectric studies, thermogravimetry/differential thermal analysis, and scanning electron microscopic studies, respectively. Polymer electrolytes are found to exhibit higher ionic conductivity at higher concentration of plasticizer at the cost of their mechanical stability. Conductivity of 1.879 × 10−4 S cm−1 is exhibited by the polymer electrolyte consisting of 69% of plasticizer with appreciable thermal stability up to 523 K. Temperature and frequency dependence of conductivity is found to follow Vogel Tammann Fulcher relation and Jonscher power law, respectively. Real and imaginary parts of dielectric constants are found to decrease with increase in frequency which could be due to the electrode polarization effect.

Keywords

Plasticized polymer electrolytes Ethylene carbonate Conductivity Dielectric studies Morphological analysis 

Notes

Acknowledgements

The authors would like to thank VIT University for providing characterization facility (SEM studies under DST-FIST programme). The authors also thank Central Instrumentation Facility department of Pondicherry University for providing TG/DTA characterizations.

Reference

  1. 1.
    Zhu YS, Wang XJ, Hou YY, Gao XW, Liu LL, Wu YP, Shimizu M (2013) A new single-ion polymer electrolyte based on polyvinyl alcohol for lithium ion batteries. Electrochim Acta 87:113CrossRefGoogle Scholar
  2. 2.
    Sekhon S (2003) Effect of donor number of solvent on the conductivity behaviour of nonaqueous proton-conducting polymer gel electrolytes. Solid State Ionics 160:301CrossRefGoogle Scholar
  3. 3.
    Murata K, Izuchi S, Yoshihisa Y (2000) An overview of the research and development of solid polymer electrolyte batteries. Electrochim Acta 45:1501CrossRefGoogle Scholar
  4. 4.
    Radha KP, Selvasekarapandian S, Karthikeyan S, Hema M, Sanjeeviraja C (2013) Synthesis and impedance analysis of proton-conducting polymer electrolyte PVA: NH4F. Ionics 19:1437CrossRefGoogle Scholar
  5. 5.
    Ji J, Li B, Zhong W-H (2010) Effects of a block copolymer as multifunctional fillers on ionic conductivity, mechanical properties, and dimensional stability of solid polymer electrolytes. J Phys Chem B 114:13637CrossRefGoogle Scholar
  6. 6.
    Ramesh S, Winie T, Arof AK (2007) Investigation of mechanical properties of poly (vinyl chloride)–polyethylene oxide (PVC–PEO) based polymer electrolytes for lithium polymer cells. Eur Polym J 43:1963CrossRefGoogle Scholar
  7. 7.
    Ulaganathan M, Rajendran S (2011) Novel Li-ion conduction on poly (vinyl acetate)-based hybrid polymer electrolytes with double plasticizers. J Appl Electrochem 41:83CrossRefGoogle Scholar
  8. 8.
    Rajendran S, Babu R, Sivakumar P (2008) Ionic conduction in plasticized PVC/PAN blend polymer electrolytes. Ionics 14:149CrossRefGoogle Scholar
  9. 9.
    Ji J, Li B, Zhong WH (2010) Simultaneously enhancing ionic conductivity and mechanical properties of solid polymer electrolytes via a copolymer multi-functional filler. Electrochim Acta 55:9075CrossRefGoogle Scholar
  10. 10.
    Prasanth R, Shubha N, Hng HH, Srinivasan M (2014) Effect of poly (ethylene oxide) on ionic conductivity and electrochemical properties of poly (vinylidenefluoride) based polymer gel electrolytes prepared by electrospinning for lithium ion batteries. J Power Sources 245:283CrossRefGoogle Scholar
  11. 11.
    Sim LN, Majid SR, Arof AK (2014) Effects of 1–butyl–3–methyl imidazolium trifluoromethanesulfonate ionic liquid in poly (ethyl methacrylate)/poly (vinylidenefluoride–co–hexafluoropropylene) blend based polymer electrolyte system. Electrochim Acta 123:190CrossRefGoogle Scholar
  12. 12.
    Stepniak I (2014) Compatibility of poly (bisAEA4)-LiTFSI–MPPipTFSI ionic liquid gel polymer electrolyte with Li4Ti5O12 lithium ion battery anode. J Power Sources 247:112CrossRefGoogle Scholar
  13. 13.
    Pan CY, Gao JH, Zhang Q, Feng Q, Chao M (2008) Preparation and properties of PEO/LiClO4/KH560-SiO2 composite polymer electrolyte by sol-gel composite-in-situ method. J Cent S Univ Technol 15:295CrossRefGoogle Scholar
  14. 14.
    Liang B, Tang S, Jiang Q, Chen C, Chen X, Li S, Yan X (2015) Preparation and characterization of PEO-PMMA polymer composite electrolytes doped with nano-Al2O3. Electrochim Acta 169:334CrossRefGoogle Scholar
  15. 15.
    Morenoa M, Quijada R, Santa Anaa MA, Benaventea E, Gomez-Romero P, González G (2011) Electrical and mechanical properties of poly(ethylene oxide)/intercalated clay polymer electrolyte. Electrochim Acta 58:112CrossRefGoogle Scholar
  16. 16.
    Ramesh S, Yi J (2009) Structural, thermal, and conductivity studies of high molecular weight poly (vinylchloride)-lithium triflate polymer electrolyte plasticized by dibutyl phthalate. Ionics 15:725CrossRefGoogle Scholar
  17. 17.
    Flora XH, Ulaganathan M, Rajendran S (2013) Role of different plasticizers in li-ion conducting poly (acrylonitrile)-poly (methyl methacrylate) hybrid polymer electrolyte. Int J Polym Mater Polym Biomater 62:737CrossRefGoogle Scholar
  18. 18.
    Das S, Ghosh A (2015) Effect of plasticizers on ionic conductivity and dielectric relaxation of PEO-LiClO4 polymer electrolyte. Electrochim Acta 171:59CrossRefGoogle Scholar
  19. 19.
    Kumar M, Sekhon SS (2002) Role of plasticizer’s dielectric constant on conductivity modification of PEO–NH4F polymer electrolytes. Eur Polym J 38:1297CrossRefGoogle Scholar
  20. 20.
    Agrawal RC, Pandey GP (2008) Solid polymer electrolytes: materials and designing and all-solid-state battery applications: an overview. J Phys D Appl Phys 41:223001CrossRefGoogle Scholar
  21. 21.
    Felix BD, Lambertus P, Jakobert BJV (2000) Trends in polymer electrolytes for secondary lithium batteries. J Power Sources 88:169CrossRefGoogle Scholar
  22. 22.
    Zhou D, Fan LZ, Fan H, Shi Q (2013) Electrochemical performance of trimethylolpropane trimethylacrylate-based gel polymer electrolyte prepared by in situ thermal polymerization. Electrochim Acta 89:334CrossRefGoogle Scholar
  23. 23.
    Choi J-W, Cheruvally G, Kim Y-H, Kim J-K, Manuel J, Raghavan P, Ahn J-H, Kim K-W, Ahn H-J, Choi DS, Song CE (2007) Poly(ethylene oxide)-based polymer electrolyte incorporating room-temperature ionic liquid for lithium batteries. Solid State Ionics 178:1235CrossRefGoogle Scholar
  24. 24.
    Zhang H, Xuan X, Wang J, Wang H (2005) Effect of poly(vinylidene fluoride) on solvation of NaSCN in PEO. Spectrochim Acta A 61:347CrossRefGoogle Scholar
  25. 25.
    Rajendran S, Sivakumar M, Subadevi R (2003) Effect of plasticizers in poly (vinyl alcohol)-based hybrid solid polymer electrolytes. J Appl Polym Sci 90:2794CrossRefGoogle Scholar
  26. 26.
    Woo HJ, Majid SR, Arof AK (2013) Effect of ethylene carbonate on proton conducting polymer electrolyte based on poly (ε-caprolactone) (PCL). Solid State Ionics 252:102CrossRefGoogle Scholar
  27. 27.
    Hwang JJ, Liu HJ (2002) Influence of organophilic clay on the morphology, plasticizer-maintaining ability, dimensional stability, and electrochemical properties of gel polyacrylonitrile (PAN) nanocomposite electrolytes. Macromolecules 35:7314CrossRefGoogle Scholar
  28. 28.
    Isa KM, Osman Z, Arof AK, Othman L, Zainol NH, Samin SM, Chong WG, Kamarulzaman N (2014) Lithium ion conduction and ion–polymer interaction in PVdF-HFP based gel polymer electrolytes. Solid State Ionics 268:288CrossRefGoogle Scholar
  29. 29.
    Vikas Mittal. Functional polymer blends, London New York. 2012.CrossRefGoogle Scholar
  30. 30.
    Morita M, Tanaka H, Ishikawa M, Matsuda Y (1996) Effects of crown ethers on the electrochemical properties of polymeric solid electrolytes consisting of poly (ethylene oxide)-grafted poly (methylmethacrylates). Solid State Ionics 86-88:401CrossRefGoogle Scholar
  31. 31.
    Wen Z, Itoh T, Ichikawa Y, Kubo M, Yamamoto O (2000) Blend-based polymer electrolytes of poly (ethylene oxide) and hyperbranched poly [bis (triethylene glycol) benzoate] with terminal acetyl groups. Solid State Ionics 134:281CrossRefGoogle Scholar
  32. 32.
    Rajendran S, Babu RS (2009) Ionic conduction behavior in PVC–PEG blend polymer electrolytes upon the addition of TiO2. Ionics 15:61CrossRefGoogle Scholar
  33. 33.
    R. J. Sengwa, S. Choudhary, Dielectric properties and fluctuating relaxation processes of poly (methyl methacrylate) based polymeric nanocomposite electrolytes, J Phys Chem Solids 75 (2014) 765.Google Scholar
  34. 34.
    Nithya H, Selvasekarapandian S, Arun Kumar D, Sakunthala A, Hema M, Christopherselvin P, Kawamura J, Baskaran R, Sanjeeviraja C (2011) Thermal and dielectric studies of polymer electrolyte based on P(ECH-EO). Mater Chem Phys 126:404–408CrossRefGoogle Scholar
  35. 35.
    Pradhan DK, Samantary BK, Choudhary RNP, Thakur AK (2005) Effect of plasticizer on microstructure and electrical properties of a sodium ion conducting composite polymer electrolytes. Ionics 11:95–102CrossRefGoogle Scholar
  36. 36.
    Frech R, Chintapalli S (1996) Effect of propylene carbonate as a plasticizer in high molecular weight PEO-LiCF3SO3 electrolytes. Solid State Ionics 85:61CrossRefGoogle Scholar
  37. 37.
    Lin-Vien D, Colthup NB (1991) In: Fateley WG, Grasselli JG (eds) The handbook of infrared and Raman characteristic frequencies of organic molecules, ElsevierGoogle Scholar
  38. 38.
    Sim LN, Majid SR, Arof AK (2012) FTIR studies of PEMA/PVdF-HFP blend polymer electrolyte system incorporated with LiCF3SO3 salt. Vib Spectrosc 58:57CrossRefGoogle Scholar
  39. 39.
    Schrader B (1995) Infrared and Raman spectroscopy. VCH Publishers. Inc., New YorkCrossRefGoogle Scholar
  40. 40.
    Uma T, Mahalingam T, Stimming U (2005) Conductivity studies on poly(methyl methacrylate)–Li2SO4 polymer electrolyte systems. Mater Chem Phys 90:245CrossRefGoogle Scholar
  41. 41.
    Ali AMM, Yahya MZA, Bahron H, Subban RHY, Harun MK, Atan I (2007) Impedance studies on plasticized PMMA-LiX [X: CF3SO3 , N(CF3SO2)2 ] polymer electrolytes. Mater Lett 61:2026CrossRefGoogle Scholar
  42. 42.
    Ramesh S, Koay HL, Kumutha K, Arof AK (2007) FTIR studies of PVC/PMMA blend based polymer electrolytes. Spectrochim Acta A 66:1237CrossRefGoogle Scholar
  43. 43.
    Jiang J, Gao D, Li Z, Guangyao S (2006) Gel polymer electrolytes prepared by in situ polymerization of vinyl monomers in room-temperature ionic liquids. React Funct Polym 66:1141CrossRefGoogle Scholar
  44. 44.
    Rajendran S, Mahendran O, Kannan R (2002) Characterization [(1-x) PMMA-x PVdF] polymer blend electrolyte with li+ ion. Fuel 81:1077CrossRefGoogle Scholar
  45. 45.
    Achari VB, Reddy TJ, Sharma AK, Rao VN (2007) Electrical, optical, and structural characterization of polymer blend (PVC/PMMA) electrolyte films. Ionics 13:349CrossRefGoogle Scholar
  46. 46.
    Helan Flora X, Ulaganathan M, Babu RS, Rajendran S (2012) Evaluation of lithium ion conduction in PAN/PMMA-based polymer blend electrolytes for li-ion battery applications. Ionics 18:731CrossRefGoogle Scholar
  47. 47.
    Rajendran S, Babu R, Sivakumar P (2009) Optimization of PVC–PAN-based polymer electrolytes. J Appl Polym Sci 113:1651CrossRefGoogle Scholar
  48. 48.
    Ramesh S, Ng HM (2011) An investigation on PAN–PVC–LiTFSI based polymer electrolytes system. Solid State Ionics 192:2CrossRefGoogle Scholar
  49. 49.
    Ostrovskii D, Brodin A, Torell LM, Appetecchi GB, Scrosati B (1998) Molecular and ionic interactions in poly (acrylonitrile)-and poly (methylmetacrylate)-based gel electrolytes. J Chem Phys 109:7618CrossRefGoogle Scholar
  50. 50.
    Stephan AM, Thirunakaran R, Renganathan NG, Sundaram V, Pitchumani S, Muniyandi N, Gangadharan R, Ramamoorthy P (1999) A study on polymer blend electrolyte based on PVC/PMMA with lithium salt. J Power Sources 81:752CrossRefGoogle Scholar
  51. 51.
    Kumar D, Hashmi SA (2010) Ion transport and ion–filler-polymer interaction in poly (methyl methacrylate)-based, sodium ion conducting, gel polymer electrolytes dispersed with silica nanoparticles. J Power Sources 195:5101CrossRefGoogle Scholar
  52. 52.
    Rhoo H-J, Kim H-T, Park J-K, Hwang T-S (1997) Ionic conduction in plasticized PVC/PMMA blend polymer electrolytes. Elecrrochimrca Acta 42(10):1571–1579CrossRefGoogle Scholar
  53. 53.
    Yahya MZ, Arof AK (2003) Effect of oleic acid plasticizer on chitosan–lithium acetate solid polymer electrolytes. Eur Polym J 39:897CrossRefGoogle Scholar
  54. 54.
    Latif F, Aziz M, Ali AM, Yahya MZ (2009) The coagulation impact of 50% epoxidised natural rubber chain in ethylene carbonate-plasticized solid electrolytes. In Macromolecular symposia 277:62–68CrossRefGoogle Scholar
  55. 55.
    Kalogeras IM, Hagg Lobland HE (2012) J Mater Ed 34:69–94Google Scholar
  56. 56.
    I. M. Kalogeras, Glass-transition phenomena in polymer blends, in Encyclopedia of polymer blends, Volume 3: Structure (Ed.: Α.Ι. Isayev), Chapter 1, pp 1–134, Wiley, 2016. ISBN: 978-3-527-31931-2.Google Scholar
  57. 57.
    Capiglia C, Saito Y, Yamamoto H, Kageyama H, Mustarelli P (2000) Transport properties and microstructure of gel polymer electrolytes. Electrochim Acta 45:1341CrossRefGoogle Scholar
  58. 58.
    Polu AR, Rhee H-W (2015) Nanocomposite solid polymer electrolytes based on poly(ethyleneoxide)/POSS-PEG (n = 13.3) hybrid nanoparticles for lithium ion batteries. J Ind Eng Chem 31:323CrossRefGoogle Scholar
  59. 59.
    Gogulamurali N, Suthanthiraraj SA, Maruthamuthu P (1992) In: Chowdari BVR, Chandra S, Singh S, Srivastava PC (eds) Solid state ionics: materials and applications. World Scientific, SingaporeGoogle Scholar
  60. 60.
    Venkateswarlu M, Satyanarayana N (1998) AC conductivity studies of silver based fast ion conducting glassy materials for solid state batteries. Mater Sci Eng B 54:189CrossRefGoogle Scholar
  61. 61.
    Polu AR, Kumar R, Rhee H-W (2015) Magnesium ion conducting solid polymer blend electrolyte based on biodegradable polymers and application in solid-state batteries. Ionics 21:125CrossRefGoogle Scholar
  62. 62.
    Jonscher AK (1977) The universal dielectric response. Nature 267:673CrossRefGoogle Scholar
  63. 63.
    Das A, Thakur AK, Kumar K (2014) Conductivity scaling and near-constant loss behavior in ion conducting polymer blend. Solid State Ionics 268:185CrossRefGoogle Scholar
  64. 64.
    Karmakar A, Ghosh A (2012) Dielectric permittivity and electric modulus of polyethylene oxide (PEO)–LiClO4 composite electrolytes. Curr Appl Phys 12:539CrossRefGoogle Scholar
  65. 65.
    Sengwa RJ, Dhatarwal P, Choudhary S (2015) Effects of plasticizer and nanofiller on the dielectric dispersion and relaxation behaviour of polymer blend based solid polymer electrolytes. Curr Appl Phys 15:135–143CrossRefGoogle Scholar
  66. 66.
    Banerjee S, Kumar A (2010) Dielectric behavior and charge transport in polyaniline nanofiber reinforced PMMA composites. J Phys Chem Solids 71:381CrossRefGoogle Scholar
  67. 67.
    Ng HM, Ramesh S, Ramesh K (2015) Exploration on the P (VP-co-VAc) copolymer based gel polymer electrolytes doped with quaternary ammonium iodide salt for DSSC applications: electrochemical behaviors and photovoltaic performances. Org Electron 22:132CrossRefGoogle Scholar
  68. 68.
    Ramesh S, Arof AK (2001) Ionic conductivity studies of plasticized poly (vinyl chloride) polymer electrolytes. Mater Sci Eng B 85:11CrossRefGoogle Scholar
  69. 69.
    Mishra R, Baskaran N, Ramakrishnan PA, Rao KJ (1998) Lithium ion conduction in extreme polymer in salt regime. Solid State Ionics 112:261CrossRefGoogle Scholar
  70. 70.
    Nithya H, Selvasekarapandian S, Kumar DA, Sakunthala A, Hema M, Christopherselvin P, Kawamura J, Baskaran R, Sanjeeviraja C (2011) Thermal and dielectric studies of polymer electrolyte based on P (ECH-EO). Mater Chem Phys 126:404CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  • R. Arunkumar
    • 2
  • Ravi Shanker Babu
    • 1
  • M. Usha Rani
    • 1
  • S. Rajendran
    • 3
  1. 1.Centre for Crystal GrowthVIT UniversityVelloreIndia
  2. 2.Department of Physics, School of Advanced SciencesVIT UniversityVelloreIndia
  3. 3.Department of PhysicsAlagappa UniversityKaraikudiIndia

Personalised recommendations