, Volume 23, Issue 11, pp 3085–3096 | Cite as

Hybrid anion exchange membrane of hydroxyl-modified polysulfone incorporating guanidinium-functionalized graphene oxide

  • Yanxiang Liu
  • Jian Dai
  • Kuibo Zhang
  • Lingling Ma
  • Naeem Akhtar Qaisrani
  • Fengxiang Zhang
  • Gaohong He
Original Paper


Incorporating nanofillers is an effective method to balance conductivity and mechanical strength of anion exchange membranes (AEMs). In this work, a series of AEMs were prepared via embedding guanidinium-functionalized graphene oxide (GGO) into un-quaternized, diethanolamine-modified polysulfone (HPSf). The improved hydrophilicity of HPSf allows for better compatibility between GGO and polymer and also gives higher water uptake, which is beneficial for facilitating ion transport and alleviating hydroxide attack. AEM of HPSf embedding an optimized amount of GGO (0.88 mmol g−1) exhibits the highest conductivity of 11 mS cm−1 at 30 °C, which is 38% higher than that of pristine PSf-GGO membrane. It also possesses excellent anti-swelling stability (9% swelling ratio at 60 °C). When treated with 1 M NaOH at 60 °C for 120 h, HPSf-GGO-25% experienced a conductivity decay by 25%. Our work provides a route to fabrication of hybrid AEMs with improved interface properties and well-balanced conductivity and robustness.


Anion exchange membrane Graphene oxide Guanidinium 



We gratefully acknowledge the financial supports from the National Natural Science Foundation of China (grant no. 21276252), the Basic Research Fund of Central Universities China (grant no. DUT14RC (3) 20), the financial support of State Key Laboratory of Fine Chemicals (Panjin) (grant no. JH2014009), and the Natural Science Foundation of Liaoning Province (2015020630).


  1. 1.
    Kreuer K (2014) Ion conducting membranes for fuel cells and other electrochemical devices. Chem Mater 26:361–380CrossRefGoogle Scholar
  2. 2.
    Lu S, Pan J, Huang A, Zhuang L, Lu J (2008) Alkaline polymer electrolyte fuel cells completely free from noble metal catalysts. PNAS 105:20611–20614CrossRefGoogle Scholar
  3. 3.
    Wang Y, Qiao J, Baker R, Zhang J (2013) Alkaline polymer electrolyte membranes for fuel cell applications. Chem Soc Rev 42:5768CrossRefGoogle Scholar
  4. 4.
    Lin C, Wang Y, Lee C et al (2012) Preparation and performance of sulfonated polyimide/Nafion multilayer membrane for proton exchange membrane fuel cell. J Power Sources 200:1–7CrossRefGoogle Scholar
  5. 5.
    Ge Q, Ran J, Miao J, Yang Z, Xu T (2015) Click chemistry finds its way in constructing an ionic highway in anion-exchange membrane. ACS Appl Mater Interfaces 7:28545–28553CrossRefGoogle Scholar
  6. 6.
    Jannasch P, Weiber EA (2016) Configuring anion-exchange membranes for high conductivity and alkaline stability by using cationic polymers with tailored side chains. Macromol Chem Phys 217:1108–1118CrossRefGoogle Scholar
  7. 7.
    Dang H, Jannasch P (2015) Exploring different cationic alkyl side chain designs for enhanced alkaline stability and hydroxide ion conductivity of anion-exchange membranes. Macromolecules 48:5742–5751CrossRefGoogle Scholar
  8. 8.
    Geise GM, Hickner MA, Logan BE (2013) Ionic resistance and permselectivity tradeoffs in anion exchange membranes. ACS Appl Mater Interfaces 5:10294–10301CrossRefGoogle Scholar
  9. 9.
    Ge Q, Liu Y, Xu T et al (2016) Hyper-branched anion exchange membranes with high conductivity and chemical stability. Chem Commun 52:10141–10143CrossRefGoogle Scholar
  10. 10.
    Yokota N, Ono H, Miyake J, Nishino E, Asazawa K, Miyatake K et al (2014) Anion conductive aromatic block copolymers containing diphenyl ether or sulfide groups for application to alkaline fuel cells. ACS Appl Mater Interfaces 6:17044–17052CrossRefGoogle Scholar
  11. 11.
    Ye Y, Sharick S, Davis EM, Winey KI, Elabd YA (2013) High hydroxide conductivity in polymerized ionic liquid block copolymers. ACS Macro Lett 2:575–580CrossRefGoogle Scholar
  12. 12.
    Zeng Q, Liu Q, Broadwell I, Zhu A, Xiong Y, Tu X (2010) Anion exchange membranes based on quaternized polystyrene-block-poly(ethylene-ran-butylene)-block-polystyrene for direct methanol alkaline fuel cells. J Membrane Sci 349:237–243CrossRefGoogle Scholar
  13. 13.
    Dong X, Hou S, Mao H, Zheng J, Zhang S (2016) Novel hydrophilic-hydrophobic block copolymer based on cardo poly(arylene ether sulfone)s with bis-quaternary ammonium moieties for anion exchange membranes. J Membrane Sci 518:31–39CrossRefGoogle Scholar
  14. 14.
    Jiang Z, Zhao X, Manthiram A (2013) Sulfonated poly(ether ether ketone) membranes with sulfonated graphene oxide fillers for direct methanol fuel cells. Int J Hydrogen Energ 38:5875–5884CrossRefGoogle Scholar
  15. 15.
    Kowsari E, Zare A, Ansari V (2015) Phosphoric acid-doped ionic liquid-functionalized graphene oxide/sulfonated polyimide composites as proton exchange membrane. Int J Hydrogen Energ 40:13964–13978CrossRefGoogle Scholar
  16. 16.
    Hu B, Miao L, Zhao Y, Lü C (2017) Azide-assisted crosslinked quaternized polysulfone with reduced graphene oxide for highly stable anion exchange membranes. J Membrane Sci 530:84–94CrossRefGoogle Scholar
  17. 17.
    Yun-Sheng Ye Y, Cheng M, Xie X et al (2013) Alkali doped polyvinyl alcohol/graphene electrolyte for direct methanol alkaline fuel cells. Int J Hydrogen Energ 239:424–432Google Scholar
  18. 18.
    Yang C, Chiu S, Kuo S, Liou T (2012) Fabrication of anion-exchange composite membranes for alkaline direct methanol fuel cells. J Power Sources 199:37–45CrossRefGoogle Scholar
  19. 19.
    Zhang N, Wang B, Zhang Y et al (2014) Mechanically reinforced phosphoric acid doped quaternized poly(ether ether ketone) membranes via cross-linking with functionalized graphene oxide. Chem Commun 50:15381–15384CrossRefGoogle Scholar
  20. 20.
    Das G, Park B, Yoon B (2016) A bionanocomposite based on 1,4-diazabicyclo-[2.2.2]-octane cellulose nanofiber cross-linked-quaternary polysulfone as an anion conducting membrane. J Mater Chem A 4:15554–15564CrossRefGoogle Scholar
  21. 21.
    Li N, Yan T, Li Z, Thomas T, Wolfgang H (2012) Comb-shaped polymers to enhance hydroxide transport in anion exchange membranes. Energy Environ Sci 5:7888–7892CrossRefGoogle Scholar
  22. 22.
    Zhu L, Pan J, Wang Y, Han J, Zhuang L, Hickner MA (2016) Multication side chain anion exchange membranes. Macromolecules 49:815–824CrossRefGoogle Scholar
  23. 23.
    Lee H, Liu K, Tsai L, Lai J, Chao C (2014) Anion exchange membranes based on novel quaternized block copolymers for alkaline direct methanol fuel cells. RSC Adv 4(21):10944CrossRefGoogle Scholar
  24. 24.
    Pan J, He Y, Wu L, Jiang C, Wu B, Mondal AN, Xu T et al (2015) Anion exchange membranes from hot-pressed electrospun QPPO–SiO2 hybrid nanofibers for acid recovery. J Membrane Sci 480:115–121CrossRefGoogle Scholar
  25. 25.
    Pandey RP, Thakur AK, Shahi VK (2014) Stable and efficient composite anion-exchange membranes based on silica modified poly(ethyleneimine)–poly(vinyl alcohol) for electrodialysis. J Membrane Sci 469:478–487CrossRefGoogle Scholar
  26. 26.
    Liu L, Tong C, He Y, Zhao Y, Hu B, Lü C (2015) Novel quaternized mesoporous silica nanoparticle modified polysulfone-based composite anion exchange membranes for alkaline fuel cells. RSC Adv 5:43381–43390CrossRefGoogle Scholar
  27. 27.
    Wu Y, Wu C, Fei Yu F (2008) Free-standing anion-exchange PEO–SiO2 hybrid membranes. J Membrane Sci 307:28–36CrossRefGoogle Scholar
  28. 28.
    Li X, Tao J, Nie G, Wang L, Li L, Liao S (2014) Cross-linked multiblock copoly(arylene ether sulfone) ionomer/nano-ZrO2 composite anion exchange membranes for alkaline fuel cells. RSC Adv 4:41398–41410CrossRefGoogle Scholar
  29. 29.
    Li X, Yu Y, Meng Y (2013) Novel quaternized poly(arylene ether sulfone)/nano-ZrO2 composite anion exchange membranes for alkaline fuel cells. ACS Appl Mater Interfaces 5:1414–1422CrossRefGoogle Scholar
  30. 30.
    Yin Y, Xu T, He G, Jiang Z, Wu H (2015) Fabrication of sulfonated poly(ether ether ketone)-based hybrid proton-conducting membranes containing carboxyl or amino acid-functionalized titania by in situ sol–gel process. J Power Sources 276:271–278CrossRefGoogle Scholar
  31. 31.
    Yang C, Chiu S, Chien W, Chiu S (2010) Quaternized poly(vinyl alcohol)/alumina composite polymer membranes for alkaline direct methanol fuel cells. J Power Sources 195:2212–2219CrossRefGoogle Scholar
  32. 32.
    Li J, Yan X, Zhang Y, Zhao B, He G (2016) Enhanced hydroxide conductivity of imidazolium functionalized polysulfone anion exchange membrane by doping imidazolium surface-functionalized nanocomposites. RSC Adv 6:58380–58386CrossRefGoogle Scholar
  33. 33.
    Chen H, Wang J, Bai H, Sun J, Li Y, Liu Y et al (2015) Nanohybrid membranes with hydroxide ion transport highways constructed from imidazolium-functionalized graphene oxide. RSC Adv 5:88736–88747CrossRefGoogle Scholar
  34. 34.
    Arges CG, Ramani V (2013) Two-dimensional NMR spectroscopy reveals cation-triggered backbone degradation in polysulfone-based anion exchange membranes. Proc Natl Acad Sci 110:2490–2495CrossRefGoogle Scholar
  35. 35.
    Liu L, Li Q, Dai J, Wang H, Jin B, Bai R (2014) A facile strategy for the synthesis of guanidinium-functionalized polymer as alkaline anion exchange membrane with improved alkaline stability. J Membrane Sci 453:52–60CrossRefGoogle Scholar
  36. 36.
    Wang J, Li S, Zhang S (2010) Novel hydroxide-conducting polyelectrolyte composed of an poly(arylene ether sulfone) containing pendant quaternary guanidinium groups for alkaline fuel cell applications. Macromolecules 43:3890–3896CrossRefGoogle Scholar
  37. 37.
    Cheng J, Yang G, Zhang K, He G, Jia J, Zhang F et al (2016) Guanidimidazole-quanternized and cross-linked alkaline polymer electrolyte membrane for fuel cell application. J Membrane Sci 501:100–108CrossRefGoogle Scholar
  38. 38.
    Zhang F, Zhang H, Qu C (2011) Imidazolium functionalized polysulfone anion exchange membrane for fuel cell application. J Mater Chem 21:12744–12752CrossRefGoogle Scholar
  39. 39.
    Qu C, Zhang H, Zhang F, Liu B (2012) A high-performance anion exchange membrane based on bi-guanidinium bridged polysilsesquioxane for alkaline fuel cell application. J Mater Chem 22:8203CrossRefGoogle Scholar
  40. 40.
    Wan Y, Gong L, Jiang J et al (2014) Mechanical properties of epoxy composites filled with silane-functionalized graphene oxide. Composites 64:79–89CrossRefGoogle Scholar
  41. 41.
    Hadis Z, Fu J, Jiang G et al (2015) Quaternized graphene oxide nanocomposites as fast hydroxide conductors. ACS Nano 2:2028–2037Google Scholar
  42. 42.
    Vijayakumar E, Sangeetha D (2015) A quaternized mesoporous silica/polysulfone composite membrane for an efficient alkaline fuel cell application. RSC Adv 5:42828–42835CrossRefGoogle Scholar
  43. 43.
    Xu C, Cao Y, Kumar R (2011) A polybenzimidazole/sulfonated graphite oxide composite membrane for high temperature polymer electrolyte membrane fuel cells. J Mater Chem 21:11359–11364CrossRefGoogle Scholar
  44. 44.
    Shi B, Li Y, Zhang H et al (2016) Tuning the performance of anion exchange membranes by embedding multifunctional nanotubes into a polymer matrix. J Membrane Sci 498:242–253CrossRefGoogle Scholar
  45. 45.
    Cao L, Kong L, Kong L, Shi H et al (2015) Novel sulfonated polyimide/zwitterionic polymer-functionalized graphene oxide hybrid membranes for vanadium redox flow battery. J Power Sources 299:255–264CrossRefGoogle Scholar
  46. 46.
    Khan M, Kumar M, Alothman Z (2015) Preparation and characterization of organic–inorganic hybrid anion-exchange membranes for electrodialysis. J Ind Eng Chem 21:723–730CrossRefGoogle Scholar
  47. 47.
    Vona M, Casciola M, Donnadio A et al (2017) Anionic conducting composite membranes based on aromatic polymer and layered double hydroxides. Int J Hydrogen Energ 42:3197–3205CrossRefGoogle Scholar
  48. 48.
    Zhu H, Wang F, Wang Z, Han K et al (2016) Electrorheological effect induced quaternized poly(2,6-dimethyl phenylene oxide)-layered double hydroxide composite membranes for anion exchange membrane fuel cells. RSC Adv 6:85486–85494CrossRefGoogle Scholar
  49. 49.
    Li Q, Liu L, Bai B et al (2013) Preparation and characterization of composite membranes with ionic liquid polymer-functionalized multiwalled carbon nanotubes for alkaline fuel cells. RSC Adv 3:13477–13485CrossRefGoogle Scholar
  50. 50.
    Wang C, Lin B, Ding J et al (2016) Polybenzimidazole/ionic liquid functionalized graphene oxide nanocomposite membrane for alkaline anion exchange membrane fuel cells. Mater Lett 173:219–222CrossRefGoogle Scholar
  51. 51.
    Feng T, Lin B, Ding J et al (2016) Imidazolium-based organic–inorganic hybrid anion exchange membranes for fuel cell applications. J Membrane Sci 508:7–14CrossRefGoogle Scholar
  52. 52.
    Li W, Wang S, Zhang X, Wang W, Xie X, Pei P (2014) Degradation of guanidinium-functionalized anion exchange membrane during alkaline environment. Int J Hydrogen Energ 39:13710–13717CrossRefGoogle Scholar
  53. 53.
    Liu L, Tong C, He Y, Zhao Y, Lü C (2015) Enhanced properties of quaternized graphenes reinforced polysulfone based composite anion exchange membranes for alkaline fuel cell. J Membrane Sci 487:99–108CrossRefGoogle Scholar
  54. 54.
    Liao X, Ren L, Chen D et al (2015) Nanocomposite membranes based on quaternized polysulfone and functionalized montmorillonite for anion-exchange membranes. J Power Sources 286:258–263CrossRefGoogle Scholar
  55. 55.
    Ran J, Wu L, Xu T (2013) Enhancement of hydroxide conduction by self-assembly in anion conductive comb-shaped copolymers. Polym Chm 4:4612–4620CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  • Yanxiang Liu
    • 1
  • Jian Dai
    • 1
  • Kuibo Zhang
    • 1
  • Lingling Ma
    • 1
  • Naeem Akhtar Qaisrani
    • 1
  • Fengxiang Zhang
    • 1
  • Gaohong He
    • 1
  1. 1.State Key Laboratory of Fine Chemicals, School of Chemical and Petroleum EngineeringDalian University of TechnologyPanjinChina

Personalised recommendations