, Volume 23, Issue 11, pp 3001–3011 | Cite as

Development of Li(Ni1/3Mn1/3Co1/3-x Na x )O2 cathode materials by synthesizing with glycine nitrate combustion technique for Li-ion rechargeable batteries

  • T. H. N. G. Amaraweera
  • Athula Wijayasinghe
  • B.-E. Mellander
  • M. A. K. L. Dissanayake
Original Paper


Glycine nitrate combustion technique was investigated for synthesizing Li(Ni1/3Mn1/3Co1/3-x Na x )O2, x = 0–0.11 based transition metal oxide cathode materials for the rechargeable Li-ion battery (LIB) under this study. X-ray diffraction and scanning electron microscopy analysis showed that the synthesized powder samples were well crystalline rather spherical secondary particles. These secondary particles were composed of softly agglomerated nano-scale primary particles. The room temperature electrical conductivity of these Na-doped materials was significantly higher than that of the base material (2.60 × 10−7 S/cm). Among them, the x = 0.04 material reported the highest electrical conductivity of 1.02 × 10−03 S cm−1. The half-cell assembled with cathode fabricated from Li(Ni1/3Mn1/3Co1/3)O2 base material showed an initial discharge capacity of 187 mA h−1 g−1 with 25 mA h−1 g−1 irreversible capacity loss and 88.47% columbic efficiency at C/5 rate with a cut-off voltage of 2.5–4.6 V at 25 °C. The electrochemical behavior of the x = 0.04 cathode showed a comparable initial discharge capacity as of the base material but with improved capacity retention.


Lithium ion rechargeable battery Cathode material Transition metal oxide Glycine nitrate combustion method Cell performance 



Financial assistance by the Human Resources Development (HRD) program of the Higher Education for Twenty First Century (HETC) project of Ministry of Higher Education, Sri Lanka is acknowledged.


  1. 1.
    Kabi S, Ghosh A (2013) Microstructure of li(Mn1/3Ni1/3Co1/3)O2 cathode material for lithium ion battery:dependence of crystal structure on calcination and heat-treatment temperature. Mater Res Bull 48:3405. doi: 10.1016/j.materresbull.2013.05.012 CrossRefGoogle Scholar
  2. 2.
    Samarasingha P, Tran-Nguyen D-H, Behm M, Wijayasinghe A (2008) Li(Mn1/3Ni1/3Co1/3)O2 synthesized by the Pechini method for the positive electrode in li-ion batteries: material characteristics and electrochemical behaviour. Electrochim Acta 53:7995. doi: 10.1016/j.electacta.2008.06.003 CrossRefGoogle Scholar
  3. 3.
    Gong C, Lv W, Qu L, Bankole OE, Li G, Zhang R, Hu M, Lei L (2014) Syntheses and electrochemical properties of layered Li0.95Na0.05Ni1/3Co1/3Mn1/3O2 and li(Mn1/3Ni1/3Co1/3)O2. J Power Sources 247:151. doi: 10.1016/j.jpowsour.2013.08.081 CrossRefGoogle Scholar
  4. 4.
    Zhang S (2007) Characterization of high tap density li(Mn1/3Ni1/3Co1/3)O2 cathode material synthesized via co-precipitation. Electrochim Acta 52(25):7337. doi: 10.1016/j.electacta.2007.06.015 CrossRefGoogle Scholar
  5. 5.
    Yabuuchi N, Ohzuku T (2003) Novel lithium insertion material of li(Mn1/3Ni1/3Co1/3)O2 for advanced lithium-ion batteries. J Power Sources 119–121:171. doi: 10.1016/S0378-7753(03)00173-3 CrossRefGoogle Scholar
  6. 6.
    Nam K-W, Yoon W-S, Yang X-Q (2009) Structural changes and thermal stability of charged LiNi1/3Co1/3Mn1/3O2 cathode material for li-ion batteries studied by time-resolved XRD. J Power Sources 189:515. doi: 10.1016/j.jpowsour.2008.10.130 CrossRefGoogle Scholar
  7. 7.
    Oljaca M, Blizanac B, Pasquier AD, Sun Y, Bontchev R (2014a) Novel li(Mn1/3Ni1/3Co1/3)O2 cathode morphologies for high power li ion-batteries. J Power Sources 248:729. doi: 10.1016/S0378-7753(03)00173-3 CrossRefGoogle Scholar
  8. 8.
    Santhanam R, Rambabu B (2010) High rate cycling performance of Li1.05Ni1/3Co1/3Mn1/3O2 materials prepared by sol–gel and co-precipitation methods for lithium-ion batteries. J Power Sources 195:4313. doi: 10.1016/j.jpowsour.2010.01.016 CrossRefGoogle Scholar
  9. 9.
    Qiu B, Wang J, Xia Y, Liu Y, Qin L, Yao X, Liu Z (2012) Effects of Na+ contents on electrochemical properties of Li1.2Ni0.13Co0.13Mn0.54O2 cathode materials. J Power Sources 240:530. doi: 10.1016/j.jpowsour.2013.04.047 CrossRefGoogle Scholar
  10. 10.
    Chen Z, Xie T, Li L, Xu M, Zhu H, Wang W (2014) Characterization of Na-substituted LiNi1/3Co1/3Mn1/3O2 cathode materials for lithium-ion battery. Ionics 20:629. doi: 10.1007/s11581-013-1022-y CrossRefGoogle Scholar
  11. 11.
    He W, Yuan D, Qian J, Ai X, Yang H, Cao Y (2013) Enhanced high-rate capability and cycling stability of Na-stabilized layered Li1.2Ni0.13Co0.13Mn0.54O2 cathode materials. J Mater Chem A 1:11397. doi: 10.1039/c3ta12296d CrossRefGoogle Scholar
  12. 12.
    Liu J, Chen H, Xie J, Sun Z, Wu N, Wu B (2014) Electrochemical performance studies of li-rich cathode materials with different primary particle sizes. J Power Sources 251:208. doi: 10.1016/j.jpowsour.2013.11.055 CrossRefGoogle Scholar
  13. 13.
    Wu F, Wang M, Su Y, Bao L, Chen S (2010a) A novel method for synthesis of layered li(Mn1/3Ni1/3Co1/3)O2 as cathode material for lithium-ion battery. J Power Sources 195:2362. doi: 10.1016/j.jpowsour.2009.10.043 CrossRefGoogle Scholar
  14. 14.
    Samarasinghe PB, Wijayasinghe A, Bhem M, Dissanayake L, Lindhberg G (2014) Development of cathode materials for lithium ion rechargeable batteries based on the system Li (Ni 1/3 Mn 1/3 Co (1/3-x) M x) O 2,(M= Mg, Fe, Al and x= 0.00 to 0.33). Solid State Ionics 268:226. doi: 10.1016/j.ssi.2014.07.012 CrossRefGoogle Scholar
  15. 15.
    Lee J-W, Lee J-H, Viet TT, Lee J-Y, Kim J-S, Lee C-H (2010) Synthesis of li(Mn1/3Ni1/3Co1/3)O2 cathode materials by using a supercritical water method in a batch reactor. Electrochim Acta 55:3015. doi: 10.1016/j.electacta.2009.12.080 CrossRefGoogle Scholar
  16. 16.
    Wijayasinghe A, Bergman B, Lagergren C (2006) LiFeO2–LiCoO2–NiO materials for molten carbonate fuel cell cathodes. Part I: powder synthesis and material characterization. Solid State Ionics 177:165. doi: 10.1016/j.ssi.2005.10.018 CrossRefGoogle Scholar
  17. 17.
    Patoux S, Doeff MM (2004) Direct synthesis of li(Mn1/3Ni1/3Co1/3)O2 from nitrate precursors. Electrochem Commun 6:767. doi: 10.1016/j.elecom.2004.05.024 CrossRefGoogle Scholar
  18. 18.
    Chick LA, Pederson LR, Maupin GD, Bates JL, Thomas LE, Exarhos GJ (1990) Glycine-nitrate combustion synthesis of oxide ceramic powders. Mater Lett 10(2):7. doi: 10.1016/0167-577X(90)90003-5 Google Scholar
  19. 19.
    Wilcox J, Patoux S, Doeff M (2009) Structure and electrochemistry of LiNi1/3Co1/3−yMyMn1/3O2 (M = Ti, al, Fe) positive electrode materials. J Electrochemical Society 156(3):A192. doi: 10.1149/1.3056109 CrossRefGoogle Scholar
  20. 20.
    Komaba S, Croguennec L, Tournadre F, Willmann P, Delmas C (2013) Thermal behavior of the layered oxide Li2/3Co2/3Mn1/3O2 Obtained by Ion Exchange from the P2-Type Na2/3Co2/3Mn1/3O2 Phase 2013. J Phys Chem C 117(7):3264. doi: 10.1021/jp310417q CrossRefGoogle Scholar
  21. 21.
    Shackelford JF (2005) Semiconductor materials, introduction to materials science for engineers, Vol 17. Ch. 6. Pearson Education, Inc., 17, p 622Google Scholar
  22. 22.
    Shi SJ, Tu JP, Tang YY, Yu YX, Zhang YQ, Wang XL, Gu CD (2013) Combustion synthesis and electrochemical performance of li [Li0.2Mn0.54Ni0.13Co0.13]O2 with improved rate capability. J Power Sources 228:14. doi: 10.1016/j.jpowsour.2012.11.091 CrossRefGoogle Scholar
  23. 23.
    Kim D, Kang S-H, Balasubramanian M, Johnson CS (2010) High-energy and high-power li-rich nickel manganese oxide electrode materials. Electrochem Commun 12:1618CrossRefGoogle Scholar
  24. 24.
    Wu F, Wang M, Su Y, Bao L, Chen S (2010b) A novel method for synthesis of layered LiNi1/3Mn1/3Co1/3O2 as cathode material for lithium-ion battery. J Power Sources 195:2362. doi: 10.1016/j.jpowsour.2009.10.043 CrossRefGoogle Scholar
  25. 25.
    Oljaca M, Blizanac B, Pasquier AD, Sun Y, Bontchev R, Suszko A, Wall R, Koehlert K (2014b) Novel li(Ni1/3Co1/3Mn1/3)O2 cathode morphologies for high power li-ion battery. J Power Sources 248:729. doi: 10.1016/j.jpowsour.2013.09.102 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  • T. H. N. G. Amaraweera
    • 1
    • 2
  • Athula Wijayasinghe
    • 1
  • B.-E. Mellander
    • 3
  • M. A. K. L. Dissanayake
    • 1
  1. 1.National Institute of Fundamental StudiesKandySri Lanka
  2. 2.Department of Science and TechnologyUva Wellassa UniversityBadullaSri Lanka
  3. 3.Department of PhysicsChalmers University of TechnologyGöteborySweden

Personalised recommendations