, Volume 23, Issue 11, pp 3037–3044 | Cite as

Sulfonated poly(phenylene oxide)/Ti3+/TiO2 nanotube arrays membrane/electrode with high performances for lithium ion battery

  • Jixiang Duan
  • Hongying Hou
  • Xianxi Liu
  • Qishu Liao
  • Song Liu
  • Yuan Yao
Original Paper


Sulfonated poly(phenylene oxide) (SPPO) film was electrodeposited on Ti3+-doped TiO2 nanotube arrays (Ti3+/TiO2NT) electrode via the electropolymerization of sulfonated phenol. The as-synthesized SPPO/Ti3+/TiO2NT membrane/electrode was investigated in terms of SEM, FESEM, EDX, FTIR, XPS, galvanostatic charge/discharge, and cycle voltammetry (CV). As expected, the porous SPPO film did form on the surface of Ti3+/TiO2NT electrode; furthermore, the resultant SPPO/Ti3+/TiO2NT membrane/electrode delivered higher electrochemical performances than PPO/Ti3+/TiO2NT, mainly attributed to the contributions of the ionic conductivity induced by –SO3H groups within SPPO.


Sulfonated phenol Ti3+-doped TiO2 nanotube arrays Ionic conductivity Electrodeposition Lithium ion battery 



This work was financially supported by the National Natural Science Foundation of China (Grant No.51363011), the 46th Scientific Research Foundation for the Returned Overseas Chinese Scholars, State Education Ministry in China (6488-20130039), the 19th Young Academic and Technical Leaders of Yunnan Province in China andthe Program of High-level Introduced Talent of Yunnan Province in China (10978125).


  1. 1.
    Goodenough JB, Park KS (2013) The Li-ion rechargeable battery: a perspective. J Am Chem Soc 135:1167–1176CrossRefGoogle Scholar
  2. 2.
    Yu S, Lee SH, Lee DJ, Sung Y, Hyeon T (2016) Conversion reaction-based oxide nanomaterials for lithium ion battery anodes. Small 12:2146–2172CrossRefGoogle Scholar
  3. 3.
    Croguennec L, Palacin MR (2015) Recent achievements on inorganic electrode materials for lithium-ion batteries. J Am Chem Soc 137:3140–3156CrossRefGoogle Scholar
  4. 4.
    Pan L, Wang H, Wu C, Liao C, Li L (2015) Tannic-acid-coated polypropylene membrane as a separator for lithium-ion batteries. ACS Appl Mater Interfaces 7:16003–16010CrossRefGoogle Scholar
  5. 5.
    Meng RJ, Hou HY, Liu XX, Yan CX, Duan JX, Liu S (2016) High performance binder-free quaternary composite CuO/Cu/TiO2NT/Ti anode for lithium ion battery. Ceram Int 42:6039–6045CrossRefGoogle Scholar
  6. 6.
    Kim JM, Huh YS, Kim HJ, Song K, Kim SH, Park HS (2014) Hollow triple-shelled SiO2/TiO2/polypyrrole nanospheres for enhanced lithium storage capability. Chem Eng J 237:380–386CrossRefGoogle Scholar
  7. 7.
    Liu R, Jonathon D, Bok LS (2011) Heterogeneous nanostructured electrode materials for electrochemical energy storage. Chem Commoun 47:1384–1404CrossRefGoogle Scholar
  8. 8.
    Duan JX, Hou HY, Liu XX, Yan CX, Liu S, Meng RJ, Hao ZL, Yao Y, Liao QS (2016) In situ Ti3+-doped TiO2 nanotubes anode for lithium-ion battery. J Porous Mater 23:837–843CrossRefGoogle Scholar
  9. 9.
    Xia T, Zhang W, Wang ZH, Zhang YL, Song XY, Murowchick J, Battaglia V, Liu G, Chen XB (2014) Amorphous carbon-coated TiO2 nanocrystals for improved lithium-ion battery and photocatalytic performance. Nano Energy 6:109–118CrossRefGoogle Scholar
  10. 10.
    Meng RJ, Hou HY, Liu XX, Duan JX, Liu S (2015) Reassessment of the roles of Ag in TiO2 nanotubes anode material for lithium ion battery. Ceram Int 41:9988–9994CrossRefGoogle Scholar
  11. 11.
    Chen J, Song W, Hou H, Zhang Y, Jing M, Jia X, Ji X (2015) Ti 3+ self-doped dark rutile TiO2 ultrafine nanorods with durable high-rate capability for lithium-ion batteries. Adv Funct Mater 25:6793–6801CrossRefGoogle Scholar
  12. 12.
    Das SK, Gnanavel M, Patel MU, Shivakumara C, Bhattacharyya AJ (2011) Anamolously high lithium storage in mesoporous nanoparticle aggregation of Fe3+ doped anatase titania. J Electrochem Soc 158:A1290–A1297CrossRefGoogle Scholar
  13. 13.
    Peng K (2015) Magnetron sputtering deposition of TiO2 particles on polypropylene separators for lithium-ion batteries. RSC Adv 5:81468–81473CrossRefGoogle Scholar
  14. 14.
    Shi JL, Fang LF, Li H, Zhang H, Zhu BK, Zhu LP (2013) Improved thermal and electrochemical performances of PMMA modified PE separator skeleton prepared via dopamine-initiated ATRP for lithium ion batteries. J Membr Sci 437:160–168CrossRefGoogle Scholar
  15. 15.
    Arora P, Zhang Z (2004) Battery separators. Chem Rev 104:4419–4462CrossRefGoogle Scholar
  16. 16.
    Li B, Li YJ, Dai DM, Chang K, Tang HW, Chang ZR, Wang CR, Yuan X, Wang HJ (2015) Facile and nonradiation pretreated membrane as a high conductive separator for Li-ion batteries. ACS Appl Mater Interfaces 7:20184–20189CrossRefGoogle Scholar
  17. 17.
    Juang RS, Hsieh CT, Chen PA, Chen YF (2015) Microwave-assisted synthesis of titania coating onto polymeric separators for improved lithium-ion battery performance. J Power Sources 286:526–533CrossRefGoogle Scholar
  18. 18.
    Gowda SR, Reddy ALM, Shaijumon MM, Zhan XB, Ci LJ, Ajayan PM (2011) Conformal coating of thin polymer electrolyte layer on nanostructured electrode materials for three-dimensional battery applications. Nano Lett 11:101–106CrossRefGoogle Scholar
  19. 19.
    Kim KJ, Kim JH, Park MS, Kwon H, Kim H, Kim YJ (2012) Enhancement of electrochemical and thermal properties of polyethylene separators coated with polyvinylidene fluoride–hexafluoropropylene co-polymer for Li-ion batteries. J Power Sources 198:298–302CrossRefGoogle Scholar
  20. 20.
    Shi C, Zhang P, Chen LX, Yang PT, Zhao JB (2014) Effect of a thin ceramic-coating layer on thermal and electrochemical properties of polyethylene separator for lithium-ion batteries. J Power Sources 270:547–553CrossRefGoogle Scholar
  21. 21.
    Plylahan N, Letiche M, Barr MKS, Ellis B, Maria S, Phan TNT, Bloch E, Knauth P, Djenizian T (2015) High energy and power density TiO2 nanotube electrodes for single and complete lithium-ion batteries. J Power Sources 273:1182–1188CrossRefGoogle Scholar
  22. 22.
    Kyeremateng NA, Dumur F, Knauth P, Pecquenard B, Djenizian T (2011) Electropolymerization of copolymer electrolyte into titania nanotube electrodes for high-performance 3D microbatteries. Electrochem Commun 13:894–897CrossRefGoogle Scholar
  23. 23.
    Ngaboyamahina E, Debiemmechouvy C, Pailleret A, Sutter EMM (2014) Electrodeposition of polypyrrole in TiO2 nanotube arrays by pulsed-light and pulsed-potential methods. J Phys Chem C 118:26341–26350CrossRefGoogle Scholar
  24. 24.
    Duan J, Hou H, Liu X, Liu S, Liao Q, Yao Y (2016) High performance PPO/Ti3+/TiO2NT membrane/electrode for lithium ion battery. Ceram Int 42:16611–16618CrossRefGoogle Scholar
  25. 25.
    Hou H, Vacandio F, DiVona ML, Knauth P (2013) Electropolymerization of sulfonated phenol by cyclic voltammetry. J Appl Polym Sci 129:1151–1156CrossRefGoogle Scholar
  26. 26.
    Hou HY, DiVona ML, Knauth P (2012) Building bridges: crosslinking of sulfonated aromatic polymers—a review. J Membr Sci 423-424:113–127CrossRefGoogle Scholar
  27. 27.
    Hou HY, Vacandio F, DiVona ML, Knauth P (2012) Sulfonated polyphenyl ether by electropolymerization. Electrochim Acta 81:58–63CrossRefGoogle Scholar
  28. 28.
    Wei Z, Xue L, Nie F, Sheng J, Shi Q, Zhao X (2014) Study of sulfonated polyether ether ketone with pendant lithiated fluorinated sulfonic groups as ion conductive binder in lithium-ion batteries. J Power Sources 256:28–31CrossRefGoogle Scholar
  29. 29.
    Di Vona ML, Marani D, D'Epifanio A, Traversa E, Trombetta M, Licoccia S (2005) A covalent organic/inorganic hybrid proton exchange polymeric membrane: synthesis and characterization. Polymer 46:1754–1758CrossRefGoogle Scholar
  30. 30.
    Thombal RS, Jadhav VH (2016) Facile O-glycosylation of glycals using Glu-Fe3O4-SO3H, a magnetic solid acid catalyst. RSC Adv 6:30846–30851CrossRefGoogle Scholar
  31. 31.
    Kyeremateng NA, Dumur F, Knauth P, Pecquenard B, Djenizian T (2013) Electrodeposited copolymer electrolyte into nanostructured titania electrodes for 3D Li-ion microbatteries. Comptes Rendus Chimie 16:80–88CrossRefGoogle Scholar
  32. 32.
    Li Z, Ding Y, Kang W, Li C, Lin D, Wang X, Chen Z, Wu M, Pan D (2015) Reduction mechanism and capacitive properties of highly electrochemically reduced TiO2 nanotube arrays. Electrochim Acta 161:40–47CrossRefGoogle Scholar
  33. 33.
    Zhu W, Wang C, Chen J, Li Y, Wang J (2014) Enhanced field emission from Ti3+ self-doped TiO2 nanotube arrays synthesized by a facile cathodic reduction process. Appl Surf Sci 301:525–529CrossRefGoogle Scholar
  34. 34.
    Rhodes CP, Long JW, Doescher MS, Dening BM, Rolison DR (2004) Charge insertion into hybrid nanoarchitectures: mesoporous manganese oxide coated with ultrathin poly(phenylene oxide). J Non-Crystal Solids 350:73–79CrossRefGoogle Scholar
  35. 35.
    Lapuente R, Quijada C, Huerta F, Cases F, Vázquez J (2003) X-Ray photoelectron spectroscopy study of the composition of polyphenol films formed on Pt by electropolymerisation of phenol in the presence of sulphide in carbonate medium. Polym J 35:911–919CrossRefGoogle Scholar
  36. 36.
    Konwar LJ, Mäki-Arvela P, Salminen E, Kumar N, Thakur AJ, Mikkola JP, Deka D (2015) Towards carbon efficient biorefining: multifunctional mesoporous solid acids obtained from biodiesel production wastes for biomass conversion. Appl Catalysis B: Environ 176-177:20–35CrossRefGoogle Scholar
  37. 37.
    Yang HN, Lee DC, Park SH, Kim WJ (2013) Preparation of Nafion/various Pt-containing SiO2 composite membranes sulfonated via different sources of sulfonic group and their application in self-humidifying PEMFC. J Membr Sci 443:210–218CrossRefGoogle Scholar
  38. 38.
    Wu H, Li D, Zhu X, Yang C, Liu D, Chen X, Song Y, Lu L (2014) High-performance and renewable supercapacitors based on TiO2 nanotube array electrodes treated by an electrochemical doping approach. Electrochim Acta 116:129–136CrossRefGoogle Scholar
  39. 39.
    Liu L, Chen X (2014) Titanium dioxide nanomaterials: self-structural modifications. Chem Rev 114:9890–9918CrossRefGoogle Scholar
  40. 40.
    Zhang X, Ferraris S, Prenesti E, Verné E (2013) Surface functionalization of bioactive glasses with natural molecules of biological significance, part II: grafting of polyphenols extracted from grape skin. Appl Surface Sci 287:341–348CrossRefGoogle Scholar
  41. 41.
    Li J, Chen S, Sheng G, Hu J, Tan X, Wang X (2011) Effect of surfactants on Pb(II) adsorption from aqueous solutions using oxidized multiwall carbon nanotubes. Chem Eng J 166:551–558CrossRefGoogle Scholar
  42. 42.
    Shimizu K, Shchukarev A, Kozin PA, Boily JF (2012) X-ray photoelectron spectroscopy of fast-frozen hematite colloids in aqueous solutions. 4. Coexistence of alkali metal (Na+, K+, Rb+, Cs+) and chloride ions. Surf Sci 606:1005–1009CrossRefGoogle Scholar
  43. 43.
    Xiong H, Yildirim H, Shevchenko EV, Prakapenka VB, Koo B, Slater MD, Balasubramanian M, Sankaranarayanan SKRS, Greeley JP, Tepavcevic S, Dimitrijevic NM, Podsiadlo P, Johnson CS, Rajh T (2012) Self-improving anode for lithium-ion batteries based on amorphous to cubic phase transition in TiO2 nanotubes. J Phys Chem C 116:3181–3187CrossRefGoogle Scholar
  44. 44.
    Qin D, Xue L, Du B, Wang J, Nie F, Wen L (2015) Flexible fluorine containing ionic binders to mitigate the negative impact caused by the drastic volume fluctuation from silicon nano-particles in high capacity anodes of lithium-ion batteries. J Mater Chem A 3:10928–10934CrossRefGoogle Scholar
  45. 45.
    Yang W, Bai X, Li T, Ma YY, Qi YX, Yin LX, Li H, Lun N, Bai YJ (2015) Excellent performance of carbon-coated TiO2/Li4Ti5O12 composites with low Li/Ti ratio for Li-ion storage. RSC Adv 5:93155–93161CrossRefGoogle Scholar
  46. 46.
    Zhang ZJ, Zeng QY, Chou SL, Li XJ, Li HJ, Ozawa K, Liu HK, Wang JZ (2014) Tuning three-dimensional TiO2 nanotube electrode to achieve high utilization of Ti substrate for lithium storage. Electrochim Acta 133:570–577CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  • Jixiang Duan
    • 1
  • Hongying Hou
    • 1
  • Xianxi Liu
    • 2
  • Qishu Liao
    • 1
  • Song Liu
    • 1
  • Yuan Yao
    • 1
  1. 1.Faculty of Material Science and EngineeringKunming University of Science and TechnologyKunmingChina
  2. 2.Faculty of Mechanical and Electrical EngineeringKunming University of Science and TechnologyKunmingChina

Personalised recommendations